Reductive coordination replication of V₂O₅ sacrificial macrostructures into vanadium-based porous coordination polymers

Julien Reboul,¹ Kenji Yoshida,² Shuhei Furukawa^{1,*} and Susmu Kitagawa^{1,2,*} ¹Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan ²Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Fig. S1 Thermogravimetric analysis of the as-synthesized $[V(OH)ndc]_n$ synthesized from V_2O_5 powder (solid line) and of the as-synthesized $[V(OH)ndc]_n$ synthesized from VCl₃ (dash line).

Fig. S2 CO₂ adsorption and desorption isotherms of $[V(O)ndc]_n$ synthesized from the V₂O₅ powder (circles) and of $[V(O)ndc]_n$ synthesized from VCl₃ (triangles). Filled circles correspond to adsorption data and open circles correspond to desorption data.

Fig. S3 Calculated XRD patterns of the activated $[V(O)bdc]_n$ obtained from VCl₃ and from V₂O₅ and calculated XRD pattern of the activated $[Al(OH)bdc]_n$.

Fig. S4 FTIR spectra of the as-synthesized and activated $[V(OH)bdc]_n$ synthesized from V_2O_5 and from VCl_3 .

Fig. S5 FTIR spectra of the V_2O_5 pattern before and after replication into $[V(OH)ndc]_n$ polycrystalline structure.

Fig. S6 FESEM image of the crystalline V_2O_5 pattern obtained after a thermal treatment at 320°C for 10h. The pattern was washed off after treatment in the presence of the organic linkers and under microwave conditions. This is presumably due to the lack of sufficient interactions between the substrate and the V_2O_5 crystals and between the V_2O_5 crystals.