SUPPLEMENTARY INFORMATION

Structures of NHC Hg(II) and Ag(I) Complexes and Selective Recognition of Nitrate Anion

Qing-Xiang Liu*, Zhi-Xiang Zhao, Xiao-Jun Zhao, Qing Wei, Ai-Hui Chen, Hui-Long Li, Xiu-Guang Wang

Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China.

* Corresponding author, E-mail: tjnulqx@163.com

Contents

- 1. CCDC numbers for complexes 1-8.
- 2. Tables S1-S3.
- 3. The crystal packings of complexes 1-8
- 4. The figures of fluorescence and UV/vis spectroscopies for 6.
- 5. The changes of ¹H NMR spectra in benzene rings for 6 and $6/NO_3$ and Scheme S1.
- 6. Preparation of bis-benzimidazolium (or bis-imidazolium) salts L²H₂·Cl₂-L⁶H₂·Cl₂ and L⁸H₂·(PF₆)₂, and complexes [L¹Hg(DMSO)](HgI₄) (3), [L⁶Hg(Hg₂I₆)] (4), [L⁸Hg₂Cl₂](Hg₃Cl₈) (5) and [[L³Ag₂Cl₂]₂ (8).
- 7. The ¹H NMR and ¹³C{¹H} NMR spectra of precursors $L^{1}H_{2} \cdot Cl_{2} L^{6}H_{2} \cdot Cl_{2}$, $L^{7}H_{2} \cdot (PF_{6})_{2} - L^{8}H_{2} \cdot (PF_{6})_{2}$ and complexes 1-8.

1. CCDC numbers for complexes 1-8.

CCDC 976658, 976659, 976656, 976652, 976655, 976657, 976653 and 976654 contains the supplementary crystallographic data for complexes **1-8**. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data, Figures and Tables associated with this article can be found in the online version.

2. Tables S1-S3

Table S1 In the same ligand, the dihedral angles between two benzene rings from phenol ether (**A**), and dihedral angles between benzimidazole (or imidazole) rings and adjacent benzene rings from phenol ether (**B**) for complexes **1-8**. The dihedral angles (°) between two benzimidazole (or imidazole) rings in NHC-Metal-NHC units (**C**) for complexes **1-4** and **6-7**

Compounds	Α	В	С	
1	30.0(4)°	77.3(6)°, 77.8(7)°	36.1(3)°	
2	46.4(3)°	73.1(8)°, 82.4(3)°	23.9(4)°	
3	81.9(1)°	78.7(5)°, 81.2(3)°	8.6(5)°	
4	7.5(1)°	81.3(0)°, 88.4(0)°	33.9(9)°	
5	72.3(0)°	72.6(1)°, 79.8(6)°	-	
6	89.2(4)°	61.3(1)°, 76.9(0)°	28.3(2)°	
7	76.2(1)°	83.6(8)°, 85.0(7)°	31.8(1)°	
8	15.5(6)°	81.0(1)°, 81.6(7)°	-	

	π	С-Н…π		
Complex	Face-to-face	Center-to-center	$\mathrm{H}{\cdots}\pi$	$\text{C-H}{\cdots}\pi$
1	3.585(6) (benzimidazole)	3.715(1) (benzimidazole)	_	_
	3.443(6) (benzimidazole to	3.869(1) (benzimidazole to		
	pyridine)	pyridine)		
2	3.396(8) (benzene)	3.610(1) (benzene)	_	_
3			3.165(9)	134.2(3)
4	_	_	3.310(4)	101.0(1)
6	3.425(1) (benzimidazole)	3.634(2) (benzimidazole)	2.961(2)	153.3(6)
7	_	_	2.624(2)	143.2(2)
8	_	_	2.854(1)	147.5(2)
			2.890(1)	127.3(2)

Table S2 Distances (Å) of π - π interactions, and distances (Å) and angles (°) of C-H··· π contacts for 1-4 and 6-8

Table S3 H-Bonding geometry (Å, °) for complexes 2-6

Compounds	D-H···A	D-H	Н…А	D···A	D-H…A
2	$C(31)$ - $H(31)$ ···Cl $(1)^i$	0.930(5)	2.775(1)	3.703(5)	175.2(3)
	$C(3)$ - $H(3A)$ ···Cl $(3)^i$	0.970(4)	2.754(1)	3.671(4)	157.8(2)
3	C(19)- $H(19B)$ ···O(3) ⁱ	0.970(0)	2.696(6)	3.642(8)	165.1(3)
	C(27)- $H(27B)$ ···O(4) ⁱ	0.970(0)	2.268(4)	3.177(6)	155.6(2)
	C(4)- $H(4)$ ···O(5) ⁱⁱⁱ	0.930(0)	2.511(5)	3.418(8)	165.1(3)
4	C(34)-H(34)···· I(1) ⁱ	0.931(1)	2.940(8)	3.751(1)	146.2(9)
	$C(21)$ - $H(21)$ ···· $I(3)^{i}$	0.929(1)	3.177(9)	3.893(1)	135.2(7)
5	C(15)- $H(15B)$ ···Cl(1)	0.970(1)	2.801(2)	3.628(1)	143.6(7)
	$C(26)$ - $H(26A)$ ···Cl $(5)^i$	0.970(1)	2.818(2)	3.620(8)	140.6(6)
6	$C(34)$ - $H(34B)$ ···· $I(4)^i$	0.970(1)	3.006(8)	3.882(1)	150.6(6)
	2/2 1/2 1/2	0 • · 1	a	• • • •	

Symmetry code: i: 3/2 - x, -1/2 + y, 1/2 - z for 2; i: 1 - x, 3 - y, -z, iii: 1 + x, -1 + y, z for 3; i: 2 - x, 2 - y, 1 - z for 4; i: x, 1.5 - y, 0.5 + z for 5; i: 1.5 + x, 3.5 - y, 0.5 + z for 6.

3. The crystal packings of complexes 1-8

Fig. S1(a) 2D supramolecular layer of complex 1 via π - π interactions. All hydrogen atoms were omitted for clarity.

Fig. S1(b) 3D supramolecular network of complex 1 via π - π interactions. All hydrogen atoms were omitted for clarity.

Fig. S2(a) 2D supramolecular layer of complex 2 via C-H···Cl hydrogen bonds. All hydrogen atoms except those participating in the C-H···Cl hydrogen bonds were omitted for clarity. Symm. Code: i: 3/2 - x, -1/2 + y, 1/2 - z.

Fig. S2(b) 3D supramolecular network of complex 2 via C-H···Cl hydrogen bonds and π - π interactions. All hydrogen atoms except those participating in the C-H···Cl hydrogen bonds were omitted for clarity.

Fig. S3(a) 2D supramolecular layer of complex 3 via C-H··· π contacts and π - π interactions. All hydrogen atoms except those participating in C-H··· π contacts were omitted for clarity.

Fig. S3(b) 3D supramolecular network of complex 3 via C-H··· π contacts, π - π interactions and C-H···I hydrogen bonds. All hydrogen atoms except those participating in C-H··· π contacts and C-H···I hydrogen bonds were omitted for clarity. Symm. Code: i: 1.5 + x, 3.5 - y, 0.5 + z.

Fig. S4 2D supramolecular layer of complex 4 via C-H····I hydrogen bonds and C-H··· π contacts. All hydrogen atoms except those participating in the C-H···I hydrogen bonds and C-H··· π contacts were omitted for clarity. Symm. Code: i: 2 - *x*, 2 - *y*, 1 - *z*.

Fig. S5 2D supramolecular layer of complex **5** via C-H····Cl hydrogen bonds. All hydrogen atoms except those participating in the C-H····Cl hydrogen bonds were omitted for clarity. Symm. Code: i: x, 1.5 - y, 0.5 + z.

Fig. S6(a) 2D supramolecular layer of complex **6** via two types of C-H···O hydrogen bonds and C-H··· π contacts. All hydrogen atoms except those participating in C-H···O hydrogen bonds and C-H··· π contacts were omitted for clarity. Symm. Code: i: 1 - *x*, 3 - *y*, -*z*.

Fig. S6(b) 3D supramolecular network of complex **6** via C-H···O hydrogen bonds and C-H··· π contacts. All hydrogen atoms except those participating in the C-H···O hydrogen bonds and C-H··· π contacts were omitted for clarity. Symm. Code: iii: 1 + x, -1 + y, z.

Fig. S7(a) 2D supramolecular layer of complex 7 via C-H $\cdots \pi$ contacts. All hydrogen atoms except those participating in the C-H $\cdots \pi$ contacts were omitted for clarity.

Fig. S7(b) 3D supramolecular architecture of complex 7 via C-H··· π contacts. All hydrogen atoms except those participating in the C-H··· π contacts were omitted for clarity.

Fig. S8(a) 2D supramolecular layer of complex 8 via C-H $\cdots \pi$ contacts. All hydrogen atoms except those participating in the C-H $\cdots \pi$ contacts were omitted for clarity.

Fig. S8(b) 3D supramolecular network of complex 8 via C-H $\cdots\pi$ contacts. All hydrogen atoms except those participating in the C-H $\cdots\pi$ contacts were omitted for clarity.

4. The figures of fluorescence and UV/vis spectroscopies for 6

Fig. S9 UV-vis absorption spectra of 6 (1 \times 10⁻⁵ mol/L) and upon the addition of the tetrabutyl ammonium salts of F⁻, Cl⁻, Br⁻, I⁻, H₂PO₄⁻, HSO₄⁻, OAc⁻ and NO₃⁻ in acetonitrile at 25°C.

Fig. S10 Emission (at 254 nm) of 6 at different concentrations of NO₃⁻ (0, 0.11, 0.25, 0.43, 0.67 μ M) added, normalized between the minimum emission (0.0 μ M NO₃⁻) and the emission at 0.67 μ M NO₃⁻. The detection limit was determined to be 1.1 × 10⁻⁷ mol/L.

Fig. S11 Benesi-Hildebrand plot of 6 (1 \times 10⁻⁵ mol/L) in the presence of NO₃⁻ in acetonitrile at 25 °C. The concentrations of NO₃⁻ are 0.04, 0.11, 0.17, 0.26, 0.33, 0.43, 0.67, 1, 1.5, 2.4, 3, 4, 6, 9 mol/L.

Fig. S12 Change ratio ($(F_i-F_0)/(F_{NO3}-F_0)$) of fluorescence intensity of **6** upon addition of 1 equiv. NO₃⁻ in the presence of 5 equiv. of background anions. 1: NO₃⁻; 2: NO₃⁻ + F⁻; 3: NO₃⁻ + Cl⁻; 4: NO₃⁻ + Br⁻; 5: NO₃⁻ + I⁻; 6: NO₃⁻ + H₂PO₄⁻; 7: NO₃⁻ + HSO₄⁻; 8: NO₃⁻ + OAc⁻ in acetonitrile at 25 °C.

Fig. S13 Fluorescence spectra of 6 (1×10^{-5} mol/L) upon addition of nitrate salts (15×10^{-5} mol/L) with different cations (Li⁺, Na⁺, K⁺, NH₄⁺, Zn²⁺, Co²⁺ and Ni²⁺).

Fig. S14 Fluorescence spectra of 6 ($1.0 \times 10^{-5} \text{ mol/L}$) upon the addition of 15 equiv. of NO₃⁻ in acetonitrile. Hg²⁺ (7.5 equiv.) was added to 6 and NO₃⁻ mixture to show the reversible binding nature of NO₃⁻ with 6.

5. The changes of ¹H NMR spectra in benzene rings for 6 and 6/NO₃⁻ and Scheme S1

Fig. S15 ¹H NMR (400 MHz, DMSO-d₆): The changes of ¹H NMR spectra in benzene rings of phenol ether for **6** and $6/NO_3^-$. a: complex **6**, b: $6/NO_3^-$.

Scheme S1 The interactions of NO₃⁻ with complex 6.

6. Preparation of bis-benzimidazolium (or bis-imidazolium) salts L²H₂·Cl₂-L⁶H₂·Cl₂ and L⁸H₂·(PF₆)₂, and complexes [L¹Hg(DMSO)](HgI₄) (3), [L⁶Hg(Hg₂I₆)] (4), [L⁸Hg₂Cl₂](Hg₃Cl₈) (5) and [[L³Ag₂Cl₂]₂ (8).

Preparation of 1,2-bis[2-(N-ⁿbutylbenzimidazoliumylmethyl)phenoxy]ethylene chloride (L²H₂·Cl₂)

This compound was prepared in a manner analogous to that of $L^1H_2 \cdot Cl_2$, only Nnbutylbenzimidazole (2.578 g, 14.8 mmol) was used instead of N-nbutylbenzimidazole. Yield: 4.022 g (91%). M.p.: 274-276 °C. Anal. Calcd for $C_{38}H_{44}O_2N_4Cl_2$: C, 69.18; H, 6.72; N, 8.49%. Found: C, 69.44; H, 6.51; N, 8.68%. ¹H NMR (400 MHz, DMSO-d₆): δ 0.84 (t, J = 7.4 Hz, 6H, CH₃), 1.26 (m, 4H, CH₂), 1.80 (m, 4H, CH₂), 4.30 (s, 4H, OCH₂), 4.37 (t, J = 7.2 Hz, 4H, CH₂), 5.57 (s, 4H, CH₂), 7.12 (m, 4H, ArH), 7.43 (m, 4H, ArH), 7.60 (m, 4H, ArH), 7.78 (d, J = 8.4 Hz, 2H, ArH), 7.98 (d, J = 8.4 Hz, 2H, ArH), 9.70 (s, 2H, 2-bimiH). ¹³C{¹H} NMR (100 MH_z, DMSO-d₆): δ 13.2 (CH₃), 19.0 (CH₂), 30.5 (CH₂), 45.9 (CH₂), 46.3 (CH₂), 66.6 (CH₂), 112.4 (PhC), 113.6 (bimiC), 113.7 (bimiC), 121.0 (bimiC or PhC), 121.6 (bimiC or PhC), 126.3 (PhC), 130.8 (bimiC or PhC), 142.5 (2-bimiC), 156.4 (PhC).

Preparation of 1,2-bis[2-(N-picolylbenzimidazoliumymethyl)phenoxyl]ethylene chloride (L³H₂·Cl₂)

This compound was prepared in a manner analogous to that of $L^1H_2 \cdot Cl_2$, only Npicolylbenzimidazole (3.096 g, 14.8 mmol) was used instead of N-ⁿbutylbenzimidazole. Yield: 3.327 g (68%), M.p.: 174-176 °C. Anal. Calcd for $C_{42}H_{38}O_2N_6Cl_2$: C, 69.13; H, 5.24; N, 11.51%. Found: C, 69.47; H, 5.66; N, 11.34%. ¹H NMR (400 MH_Z, DMSO-d₆): δ 4.31 (s, 4H, *CH*₂), 5.69 (s, 4H, *CH*₂), 5.92 (s, 4H, *CH*₂), 7.04 (d, *J* = 8.0 Hz, 4H, Ar*H*), 7.15 (m, 2H, Ar*H*), 7.42 (m, 4H, Ar*H*), 7.52 (t, *J* = 6.0 Hz, 2H, Ar*H*), 7.66 (t, *J* = 8.0 Hz, 4H, Ar*H*), 7.90 (m, 6H, Ar*H*), 8.24 (d, *J* = 4.0 Hz, 2H, Ar*H*), 10.14 (s, 2H, 2-bimi*H*). ¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 46.2 (*C*H₂), 50.6 (*C*H₂), 66.2 (*C*H₂), 112.3 (PhC), 113.7 (bimi*C*), 113.8 (bimi*C*), 120.9 (bimi*C* or Ph*C*), 121.3 (bimi*C* or Ph*C*), 122.6 (Ph*C* or Py*C*), 123.4 (Ph*C* or Py*C*), 126.3 (Ph*C*), 126.5 (Ph*C*), 130.8 (bimi*C* or Ph*C*), 130.9 (bimi*C* or Ph*C*), 131.1 (Py*C*), 137.4 (Py*C*), 143.5 (2-bimi*C*), 149.3 (Py*C*), 152.8 (Py*C*), 156.4 (Ph*C*) (Py = pyridine).

Preparation of 1,3-bis[2-(N-picolylbenzimidazoliumymethyl)phenoxyl]propylene chloride (L⁴H₂·Cl₂)

This compound was prepared in a manner analogous to that of $L^1H_2 \cdot Cl_2$, only 1,3dibromopropane (10.740 g, 53.2 mmol) and N-picolylbenzimidazole (3.096 g, 14.8 mmol) were used instead of 1,2-dibromoethane and N-ⁿbutylbenzimidazole. Yield: 3.523 g (70%). M.p.: 192-194 °C. Anal. Calcd for C₄₃H₄₀O₂N₆Cl₂: C, 69.44; H, 5.42; N, 11.30%. Found: C, 69.71; H, 5.47; N, 11.58%. ¹H NMR (400 MH_Z, DMSO-d₆): δ 2.04 (t, J = 6.0 Hz, 2H, CH₂), 4.02 (t, J = 5.8 Hz, 4H, CH₂), 5.78 (s, 4H, CH₂), 6.00 (s, 4H, CH₂), 7.62 (m, 4H, ArH), 7.70 (d, J = 7.6 Hz, 4H, ArH), 7.88 (q, J = 5.1 Hz, 4H, ArH), 7.94 (q, J = 8.0 Hz, 4H, ArH), 8.00 (q, J = 8.0 Hz, 4H, ArH), 8.01 (d, J = 12.0 Hz, 2H, ArH), 8.39 (d, J = 4.0 Hz, 2H, ArH), 10.18 (s, 2H, 2-bimiH). ¹³C{¹H} NMR (100 MH_Z, DMSO-d₆): δ 28.1 (CH₂), 48.5 (CH₂), 50.6 (CH₂), 64.6 (CH₂), 112.0 (PhC), 113.9 (bimiC), 120.6 (bimiC or PhC), 121.1 (bimiC or PhC), 122.7 (PhC or PyC), 123.6 (PhC or PyC), 126.4 (PhC), 126.5 (PhC), 130.8 (bimiC or PhC), 130.9 (bimiC or PhC), 131.2 (PyC), 137.4 (PyC), 143.5 (2-bimiC), 149.4 (PyC), 152.9 (PyC), 156.6 (PhC).

$\label{eq:linear} Preparation \quad of \quad 1,4-bis[2-(N-^npropylbenzimidazoliumymethyl)phenoxyl] butylene \\ chloride (L^5H_2\cdot Cl_2)$

This compound was prepared in a manner analogous to that of $L^{1}H_{2}$ ·Cl₂, only 1,4dibromobutane (11.486 g, 53.2 mmol) and N-ⁿpropylbenzimidazole (2.371 g, 14.8 mmol) were used instead of 1,2-dibromoethane and N-ⁿbutylbenzimidazole. Yield: 3.223 g (72%) M.p.: 198-200 °C. Anal. Calcd for C₃₈H₄₄O₂N₄Cl₂: C, 69.18; H, 6.72; N, 8.49%. Found: C, 69.52; H, 6.83; N, 8.74%. ¹H NMR (400 MH_Z, DMSO-d₆): δ 0.89 (t, *J* = 8.0 Hz, 6H, *CH*₃), 1.67 (s, 4H, *CH*₂), 3.36 (m, 4H, *CH*₂), 3.98 (s, 4H, *CH*₂), 4.51 (t, *J* = 6.0 Hz, 4H, *CH*₂), 5.69 (s, 4H, *CH*₂), 7.05 (q, *J* = 8.1 Hz, 4H, Ar*H*), 7.40 (m, 2H, Ar*H*), 7.54 (q, *J* = 18.7 Hz, 2H, Ar*H*), 7.67 (m, 4H, Ar*H*), 7.97 (q, *J* = 4.0 Hz, 2H, Ar*H*), 8.13 (d, *J* = 8.0 Hz, 2H, Ar*H*), 9.88 (s, 2H, 2-bimi*H*). ¹³C{¹H} NMR (100 MH_Z, DMSO-d₆): δ 10.5 (*C*H₃), 22.1 (*C*H₂), 25.0 (*C*H₂), 48.0 (*C*H₂), 55.9 (*C*H₂), 67.3 (*C*H₂), 112.1 (Ph*C*), 113.7 (bimi*C*), 113.8 (bimi*C*), 120.5 (bimi*C* or Ph*C*), 121.2 (bimi*C* or Ph*C*), 126.5 (Ph*C*), 130.6 (bimi*C*

Preparation of 1,1-bis[2-(N-benzylimidazoliumylmethyl)phenoxy]methylene chloride (L⁶H₂·Cl₂)

This compound was prepared in a manner analogous to that of $L^1H_2 \cdot Cl_2$, only 1,1dibromomethane (9.248 g, 53.2 mmol) and N-benzylimidazole (2.341 g, 14.8 mmol) were used instead of 1,2-dibromoethane and N-ⁿbutylbenzimidazole. Yield: 3.786 g (92%). M.p.: 190-192 °C. Anal. Calcd for $C_{35}H_{34}O_2N_4Cl_2$: C, 68.51; H, 5.58; N, 9.13%. Found: C, 68.23; H, 5.61; N, 9.59%. ¹H NMR (400 MH_Z, DMSO-d₆): δ 5.36 (s, 4H, *CH*₂), 5.46 (s, 4H, *CH*₂), 6.04 (s, 2H, OC*H*₂), 7.10 (s, 2H, Ar*H*), 7.46 (m, 16H, Ar*H*), 7.75 (s, 2H, Ar*H*), 7.84 (s, 2H, Ar*H*), 9.75 (s, 2H, 2-imi*H*). ¹³C{¹H} NMR (100 MH_Z, DMSO-d₆): δ 47.9 (*C*H₂), 51.7 (*C*H₂), 114.0 (Ph*C*), 122.3 (Ph*C*), 122.4 (Ph*C*), 122.8 (Ph*C*), 122.9 (Ph*C*), 128.2 (Ph*C*), 128.6 (Ph*C*), 128.9 (Ph*C*), 130.8 (imi*C* or Ph*C*), 131.0 (imi*C* or Ph*C*), 134.9 (Ph*C*), 136.5 (2-imi*C*), 154.1 (Ph*C*) (imi = imidazole).

Preparationof1,3-bis[2-(N-ethylimidazoliumylmethyl)phenoxy]propylenehexafluorophosphate ($L^8H_2 \cdot (PF_6)_2$)

This compound was prepared in a manner analogous to that of $L^7H_2 \cdot (PF_6)_2$, only 1,3dibromopropane (10.740 g, 53.2 mmol) was used instead of 1,2-dibromoethane. Yield: 2.402 g (81%). M.p.: 112-114 °C. Anal. Calcd for C₂₇H₃₄O₂N₄P₂F₁₂: C, 44.03; H, 4.65; N, 7.60%. Found: C, 44.32; H, 4.81; N, 7.52%. ¹H NMR (400 MH_Z, DMSO-d₆): δ 1.40 (t, *J* = 7.2 Hz, 6H, CH₃), 2.22 (m, 2H, CH₂), 4.19 (m, 8H, OCH₂), 5.34 (s, 4H, PhCH₂), 7.03 (t, *J* = 7.6 Hz, 2H, Ar*H*), 7.09 (d, *J* = 8.4 Hz, 2H, Ar*H*), 7.39 (t, *J* = 8.2 Hz, 2H, Ar*H*), 7.43 (d, *J* = 7.6 Hz, 2H, Ar*H*), 7.67 (s, 2H, Ar*H*), 7.77 (s, 2H, imi*H*), 9.14 (s, 2H, 2-imi*H*). ¹³C {¹H} NMR (100 MH_Z, DMSO-d₆): δ 15.1 (CH₃), 28.4 (CH₂), 44.2 (CH₂), 48.0 (CH₂), 64.5 (CH₂), 111.9 (PhC), 120.7 (PhC), 122.1 (PhC), 122.7 (PhC), 130.4 (imi*C* or Ph*C*), 130.8 (imi*C* or Ph*C*), 135.7 (2-imi*C*), 156.3 (Ph*C*).

Preparation of [L¹Hg(DMSO)](HgI₄) (3)

This compound was prepared in a manner analogous to that of complex **2**, only $L^{1}H_{2} \cdot Cl_{2}$ (0.189 g, 0.3 mmol) and HgI₂ (0.272 g, 0.6 mmol) were used instead of $L^{5}H_{2} \cdot Cl_{2}$ (0.197 g, 0.3 mmol) and HgCl₂ (0.163 g, 0.6 mmol) in CH₃CN/DMSO solution (15 mL, 2:1, v/v) at about 80 °C. Yield: 0.091 g (19%). Mp: 242-244 °C. Anal. Calcd for C₃₈H₄₄Hg₂I₄N₄O₃S: C, 29.52; H, 2.86; N, 3.62%. Found: C, 29.21; H, 2.64; N, 3.55%. ¹H NMR (400 MH_z, DMSO-d₆): δ 0.82 (d, *J* = 6.4 Hz, 6H, CH₃), 2.08 (q, *J* = 4.6 Hz, 4H,

CH₂), 4.03 (s, 4H, CH₂), 4.29 (s, 4H, OCH₂), 5.62 (s, 4H, CH₂), 7.00 (q, J = 6.7 Hz, 4H, ArH), 7.27 (d, J = 8.4 Hz, 2H, ArH), 7.41 (q, J = 9.4 Hz, 6H, ArH), 7.84 (m, 4H, ArH). ¹³C{¹H} NMR (100 MHz, DMSO- d_6): δ 12.7 (CH₃), 24.8 (CH₂), 48.9 (CH₂), 51.4 (CH₂), 65.1 (CH₂), 112.8 (bimi*C*), 113.0 (bimi*C*), 121.1 (bimi*C* or Ph*C*), 124.4 (bimi*C* or Ph*C*), 130.3 (bimi*C* or Ph*C*), 133.5 (bimi*C* or Ph*C*), 134.1 (Ph*C*), 156.5 (Ph*C*), 188.5 ($C_{carbene}$).

Preparation of [L⁶Hg(Hg₂I₆)] (4)

This compound was prepared in a manner analogous to that of complex **2**, only $L^{6}H_{2} \cdot Cl_{2}$ (0.184 g, 0.3 mmol) and HgI₂ (0.408 g, 0.9 mmol) were used instead of $L^{5}H_{2} \cdot Cl_{2}$ (0.197 g, 0.3 mmol) and HgCl₂ (0.163 g, 0.6 mmol). Yield: 0.353 g (61%). M.p.: 168-170 °C. Anal. Calcd for C₃₅H₃₂Hg₃I₆N₄O₂: C, 22.08; H, 1.69; N, 2.94%. Found: C, 22.43; H, 1.71; N, 2.72%. ¹H NMR (400 MH_Z, DMSO-d₆): δ 5.24 (s, 4H, CH₂), 5.69 (s, 2H, OCH₂), 5.79 (s, 4H, PhCH₂), 7.08 (t, *J* = 3.0 Hz, 4H, Ar*H*), 7.20 (d, *J* = 9.2 Hz, 6H, Ar*H*), 7.45 (t, *J* = 7.2 Hz, 4H, Ar*H*), 7.65 (q, *J* = 14.1 Hz, 8H, Ar*H*). ¹³C{¹H} NMR (100 MH_Z, DMSO-d₆): δ 51.7 (CH₂), 53.9 (CH₂), 92.9 (CH₂), 114.5 (PhC), 122.8 (PhC)), 123.9 (PhC), 124.1 (PhC), 125.1 (PhC), 127.6 (PhC), 128.3 (PhC), 129.0 (PhC), 131.1 (imiC or PhC), 131.8 (imiC or PhC), 136.7 (PhC), 153.8 (PhC), 177.4 (*C*_{carbene}).

Preparation of [L⁸Hg₂Cl₂](Hg₃Cl₈) (5)

This compound was prepared in a manner analogous to that of complex **2**, only $L^{8}H_{2} \cdot (PF_{6})_{2}$ (0.220 g, 0.3 mmol) and HgCl₂ (0.407 g, 1.5 mmol) were used instead of $L^{5}H_{2} \cdot Cl_{2}$ (0.197 g, 0.3 mmol) and HgCl₂ (0.163 g, 0.6 mmol). Yield: 0.310 g (57%). M.p.: 188-190 °C. Anal. Calcd for C₂₇H₃₂Cl₁₀Hg₅N₄O₂: C, 17.99; H, 1.78; N, 3.10%. Found: C, 18.24; H, 1.53; N, 3.43%. ¹H NMR (400 MH_Z, DMSO-d₆): δ 1.39 (t, *J* = 3.5 Hz, 6H, CH₃), 2.22 (t, *J* = 5.7 Hz, 2H, CH₂), 4.18 (t, *J* = 7.6 Hz, 4H, OCH₂), 4.29 (q, *J* = 9.3 Hz, 4H, CH₂), 5.50 (t, 4H, PhCH₂), 7.08 (m, 4H, ArH), 7.40 (m, 4H, ArH), 7.76 (q, *J* = 12.6 Hz, 4H, ArH). ¹³C{¹H} NMR (100 MH_Z, DMSO-d₆): δ 17.6 (CH₃), 29.8 (CH₂), 47.2 (CH₂), 50.8 (CH₂), 65.7 (CH₂), 109.9 (PhC), 123.1 (PhC), 123.2 (PhC), 123.8 (PhC), 123.9 (PhC), 125.1 (PhC), 131.0 (imiC), 157.1 (PhC), 167.6 (C_{carbene}).

Preparation of $[L_2^7Ag_2](PF_6)_2$ (7)

Silver oxide (0.034 g, 0.15 mmol) was added to a CH₃CN/CH₂Cl₂ (15 mL, 2:1, v/v) solution of precursor L⁷H₂·(PF₆)₂ (0.216 g, 0.3 mmol), and the suspension solution was stirred for 24 hours under refluxing. The resulting solution was filtered and concentrated to 10 mL, and Et₂O (5 mL) was added to precipitate a yellow powder. Isolation by filtration yields complex 7. Yield: 0.136 g (66%). M.p.: 182-184 °C. Anal. Calcd for C₂₆H₃₀AgF₆N₄O₂P: C, 45.69; H, 4.42; N, 8.19%. Found: C, 45.33; H, 4.52; N, 8.54%. ¹H NMR (400 MH_z, DMSO-d₆): δ 1.40 (t, *J* = 10.0 Hz, 12H, CH₃), 4.14 (q, *J* = 6.9 Hz, 8H, CH₂), 4.26 (s, 4H, OCH₂), 4.44 (s, 4H, OCH₂), 5.33 (d, *J* = 12.0 Hz, 8H, PhCH₂), 7.08 (m, 8H, Ar*H*), 7.48 (m, 16H, Ar*H*). ¹³C{¹H} NMR (100 MH_z, DMSO-d₆): δ 18.6 (CH₃), 47.3 (CH₂), 51.6 (CH₂), 67.1 (CH₂), 112.4 (PhC), 121.2 (PhC), 122.0 (PhC), 123.1 (PhC), 125.1 (PhC), 130.4 (bimi*C* or PhC), 131.1 (bimi*C* or PhC), 143.5 (PhC), 156.4 (PhC). The carbene carbon was not observed.

Preparation of [L³Ag₂Cl₂]₂ (8)

This compound was prepared in a manner analogous to that of complex 7, only $L^7H_2 \cdot (PF_6)_2$ (0.218 g, 0.3 mmol) and silver oxide (0.069 g, 0.3 mmol) were used instead of $L^7H_2 \cdot (PF_6)_2$ (0.216 g, 0.3 mmol) and silver oxide (0.034 g, 0.15 mmol). Yield: 0.131 g (46%). Mp.: 254-256 °C. Anal. Calcd for $C_{42}H_{36}Ag_2Cl_2N_6O_2$: C, 53.47; H, 3.84; N, 8.90%. Found: C, 53.52; H, 3.75; N, 8.67%. ¹H NMR (400 MH_Z, DMSO-d₆): δ 4.29 (s, 8H, OC*H*₂), 5.78 (d, *J* = 8.0 Hz, 8H, C*H*₂), 5.86 (s, 8H, C*H*₂), 7.01 (t, *J* = 7.2 Hz, 8H, Ar*H*), 7.29 (m, 4H, Ar*H*), 7.37 (m, 16H, Ar*H*), 7.74 (q, *J* = 7.4 Hz, 16H, Ar*H*), 8.38 (d, *J* = 4.4 Hz, 4H, Ar*H*). ¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 46.2 (CH₂), 50.6 (CH₂), 66.2 (CH₂), 112.3 (PhC), 113.7 (bimi*C*), 113.8 (bimi*C*), 120.9 (bimi*C* or PhC), 121.3 (bimi*C* or PhC), 122.6 (PhC or PyC), 123.4 (PhC or PyC), 126.3 (PhC), 143.4 (PhC or PyC), 149.3 (PyC), 152.8 (PyC), 156.4 (PhC). The carbene carbon was not observed.

6. The ¹H NMR and ¹³C{¹H} NMR spectra of precursors $L^{1}H_{2} \cdot Cl_{2} - L^{6}H_{2} \cdot Cl_{2}$, $L^{7}H_{2} \cdot (PF_{6})_{2} - L^{8}H_{2} \cdot (PF_{6})_{2}$ and complexes 1-8

Fig. S16 The ¹H NMR (400 MHz, DMSO-d₆) spectra of $L^{1}H_{2}$ ·Cl₂.

Fig. S17 The ¹³C NMR (100 MHz, DMSO-d₆) spectra of L¹H₂·Cl₂.

Fig. S18 The ¹H NMR (400 MHz, DMSO-d₆) spectra of $L^2H_2 \cdot Cl_2$.

Fig. S19 The 13 C NMR (100 MHz, DMSO-d₆) spectra of $L^2H_2 \cdot Cl_2$.

Fig. S20 The ¹H NMR (400 MHz, DMSO-d₆) spectra of $L^{3}H_{2}$ ·Cl₂.

Fig. S21 The ¹³C NMR (100 MHz, DMSO-d₆) spectra of $L^{3}H_{2}$ ·Cl₂.

Fig. S22 The ¹H NMR (400 MHz, DMSO-d₆) spectra of $L^4H_2 \cdot Cl_2$.

Fig. S23 The ¹³C NMR (100 MHz, DMSO-d₆) spectra of $L^4H_2 \cdot Cl_2$.

Fig. S24 The ¹H NMR (400 MHz, DMSO-d₆) spectra of $L^{5}H_{2}$ ·Cl₂.

Fig. S25 The 13 C NMR (100 MHz, DMSO-d₆) spectra of L⁵H₂·Cl₂.

Fig. S26 The ¹H NMR (400 MHz, DMSO-d₆) spectra of $L^{6}H_{2}$ ·Cl₂.

Fig. S27 The 13 C NMR (100 MHz, DMSO-d₆) spectra of L⁶H₂·Cl₂.

Fig. S28 The ¹H NMR (400 MHz, DMSO-d₆) spectra of $L^{7}H_{2}$ ·(PF₆)₂.

Fig. S29 The ¹³C NMR (100 MHz, DMSO-d₆) spectra of $L^7H_2 \cdot Cl_2$.

Fig. S30 The ¹H NMR (400 MHz, DMSO-d₆) spectra of $L^{8}H_{2}$ ·(PF₆)₂.

Fig. S31 The ¹³C NMR (100 MHz, DMSO-d₆) spectra of L⁸H₂·Cl₂.

Fig. S32 The ¹H NMR (400 MHz, DMSO- d_6) spectra of 1.

Fig. S33 The 13 C NMR (100 MHz, DMSO-d₆) spectra of 1.

Fig. S34 The ¹H NMR (400 MHz, DMSO- d_6) spectra of **2**.

Fig. S35 The 13 C NMR (100 MHz, DMSO-d₆) spectra of 2.

Fig. S36 The ¹H NMR (400 MHz, DMSO- d_6) spectra of **3**.

Fig. S37 The 13 C NMR (100 MHz, DMSO-d₆) spectra of 3.

Fig. S38 The ¹H NMR (400 MHz, DMSO- d_6) spectra of **4**.

Fig. S39 The ¹³C NMR (100 MHz, DMSO-d₆) spectra of 4.

Fig. S40 The ¹H NMR (400 MHz, DMSO- d_6) spectra of 5.

Fig. S41 The ¹³C NMR (100 MHz, DMSO-d₆) spectra of 5.

Fig. S42 The ¹H NMR (400 MHz, DMSO- d_6) spectra of 6.

Fig. S43 The 13 C NMR (100 MHz, DMSO-d₆) spectra of 6.

Fig. S44 The ¹H NMR (400 MHz, DMSO- d_6) spectra of 7.

Fig. S45 The ¹³C NMR (100 MHz, DMSO-d₆) spectra of 7.

Fig. S46 The ¹H NMR (400 MHz, DMSO- d_6) spectra of 8.

Fig. S47 The 13 C NMR (100 MHz, DMSO-d₆) spectra of 8.