-Supporting Information-

Manipulation on ZnO heterostructures: from binary ZnO-Ag to

ternary ZnO-Ag-polypyrrole

Juan Li, ^a Jian Yan, ^a Chengzhan Liu, ^a Lihong Dong, ^b Hui Lv, ^c Wendong Sun*^a and Shuangxi Xing *^a

^a Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, P.R. China 130024

^b Department of Chemistry, Tonghua Normal University, 950 Yucai Road, Tonghua, P.R. China 134002

^c Jilin Huaqiao Foreign Languages Institute, 3658 Jingyue Street, Changchun, P.R. China 130117

E-mail: xingsx737@nenu.edu.cn; sunwd843@nenu.edu.cn

Figure S1. TEM images of ZnO-Ag without PVP.

Figure S2. XRD pattern of the product synthesized in the absence of water.

Figure S3. TEM images of the product in the absence of water.

Figure S4. The typical time-dependent evolution of UV–vis absorption spectra of MB solution using ZnO (a); ZnO-Ag (b); ZnO-Ag-PPy (c) as catalysts under UV light.

Figure S5. The relationship between $-\ln(C_t/C_0)$ versus time of photodegradation of MB under UV light (a), and visible light (b) of different products.

Figure S6. The cycling runs for the degradation of MB of ZnO-Ag under UV light.