CrystEngComm/ ESI/ JCT

Electronic Supplementary Information (ESI)

Quantum mechanical predictions to elucidate the anisotropic elastic properties of zeolitic imidazolate frameworks: ZIF-4 vs. ZIF-zni

Jin-Chong Tan,*a Bartolomeo Civalleri,^{‡b} Alessandro Erba^b and Elisa Albanese^b

^a Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK ^b Department of Chemistry, NIS and INSTM Reference Centre, University of Turin, via P. Giuria 7, 10125 Torino, Italy

> *jin-chong.tan@eng.ox.ac.uk [‡]bartolomeo.civalleri@unito.it

Table of Contents

1 Ab Initio Density Functional Theory (DFT) Calculations2
1.1 CRYSTAL09: Additional Computational Details2
2 Final Optimised Geometry (DFT) vs. Experimental Lattice Parameters
2.1 ZIF-4
2.2 ZIF-zni
3 Computed Elastic Stiffness Tensors C_{ij} 's and Compliance Tensors S_{ij} 's
3.1 ZIF-4 (Orthorhombic <i>Pbca</i>) with nine independent elastic constants4
3.2 ZIF-zni (Tetragonal $I4_1cd$) with six independent elastic constants

1 Ab Initio Density Functional Theory (DFT) Calculations

1.1 CRYSTAL09 [1,2]: Additional Computational Details

The Pack–Monkhorst/Gilat shrinking factors for the *k*-point sampling of reciprocal space were set to 2 × 2, corresponding to 8 × 8 points at which the Hamiltonian matrix was diagonalized. The accuracy of the integral calculations was increased by setting the tolerances to 7, 7, 7, 7 and 16. For the numerical integration of the exchange–correlation term, 75 radial points and 974 angular points were adopted in a Lebedev scheme in the region of chemical interest. The self-consistent field iterative procedure was converged to a tolerance in total energy of $\Delta E = 1 \times 10^{-8}$ a.u.

2 Final Optimised Geometry (DFT) vs. Experimental Lattice Parameters

2.1 ZIF-4

	1 5	I			
Lattice parameters	<i>a</i> (Å)	b (Å)	c (Å)	Angles α/β/γ (°)	Volume (Å ³)
DFT PBE/BS1	15.576	15.837	18.543	90/90/90	4574.045
Expt. (233 K) Ref.[3]	15.3950(17)	15.3073(17)	18.426(2)	90/90/90	4342.2
% Deviation	+1.18%	+3.46%	+0.63%	0%	+5.34%

> Orthorhombic space group: *Pbca*

2.2 ZIF-zni

> Tetragonal space group: $I4_1cd$

Lattice parameters	<i>a</i> (Å)	b (Å)	<i>c</i> (Å)	Angles α/β/γ (°)	Volume (Å ³)
DFT PBE/BS1	23.763	23.763	12.496	90/90/90	7056.035
Expt. (298 K) Ref.[4]	23.5028(4)	23.5028(4)	12.4607(3)	90/90/90	6883.06
% Deviation	+1.11%	+1.11%	+0.28%	0%	+2.51%

3 Computed Elastic Stiffness Tensors C_{ij} 's and Compliance Tensors S_{ij} 's

Notations adopted:

Stiffness tensor
$$C_{ijkl} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ & & C_{33} & C_{34} & C_{35} & C_{36} \\ & & & C_{44} & C_{45} & C_{46} \\ & & & & C_{55} & C_{56} \end{bmatrix}$$

г

Compliance tensor $S_{ijkl} = \left[C_{ijkl}\right]^{-1}$

3.1 ZIF-4 (Orthorhombic Pbca) with nine independent elastic constants

• Stiffness Tensor

$$C_{ijkl} = \begin{bmatrix} 4.266 & 1.221 & 1.916 & 0 & 0 & 0 \\ & 3.492 & 1.526 & 0 & 0 & 0 \\ & 5.015 & 0 & 0 & 0 \\ & & 1.029 & 0 & 0 \\ & & & 1.927 & 0 \\ symm. & & & 2.453 \end{bmatrix} GPa$$

• Compliance Tensor

$$S_{ijkl} = \begin{bmatrix} 294.157 & -61.9845 & -93.5226 & 0 & 0 & 0 \\ & 343.35 & -80.7955 & 0 & 0 & 0 \\ & & 259.717 & 0 & 0 & 0 \\ & & & 971.817 & 0 & 0 \\ & & & 518.941 & 0 \\ symm. & & & 407.664 \end{bmatrix} TPa^{-1}$$

3.2 ZIF-zni (Tetragonal $I4_1cd$) with six independent elastic constants

• Stiffness Tensor

$$C_{ijkl} = \begin{bmatrix} 19.010 & 13.257 & 13.377 & 0 & 0 & 0 \\ & 19.010 & 13.377 & 0 & 0 & 0 \\ & & 23.384 & 0 & 0 & 0 \\ & & & 1.557 & 0 & 0 \\ & & & & 1.557 & 0 \\ symm. & & & & 1.759 \end{bmatrix} GPa$$

• Compliance Tensor

$$S_{ijkl} = \begin{bmatrix} 116.393 & -574.39 & -33.726 & 0 & 0 & 0 \\ & 116.393 & -33.726 & 0 & 0 & 0 \\ & & 81.351 & 0 & 0 & 0 \\ & & 642.185 & 0 & 0 \\ & & & 642.185 & 0 \\ symm. & & 568.579 \end{bmatrix} \text{TPa}^{-1}$$

4 References

- Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V.R., and Zicovich-Wilson, C.M., *CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals*. Zeitschrift Fur Kristallographie, 2005. 220(5-6): p. 571-573.
- 2. Dovesi, R., Saunders, V.R., Roetti, C., Orlando, R., Zicovich-Wilson, C.M., Pascale, F., Civalleri, B., Doll, K., Harrison, N.M., Bush, I.J., D'Arco, P., and Llunell, M., *CRYSTAL09 User's Manual, University of Torino, Torino*. 2009.
- 3. Park, K.S., Ni, Z., Cote, A.P., Choi, J.Y., Huang, R.D., Uribe-Romo, F.J., Chae, H.K., O'Keeffe, M., and Yaghi, O.M., *Exceptional chemical and thermal stability of zeolitic imidazolate frameworks*. Proceedings of the National Academy of Sciences of the United States of America, 2006. **103**(27): p. 10186-10191.
- 4. Spencer, E.C., Angel, R.J., Ross, N.L., Hanson, B.E., and Howard, J.A.K., *Pressure-induced cooperative bond rearrangement in a zinc imidazolate framework: a high-pressure single-crystal X-ray diffraction study.* Journal of the American Chemical Society, 2009. **131**(11): p. 4022-4026.