Supplementary Material (ESI) for CrystEngComm

Co-crystal formation between 2-amino-4,6-dimethylpyrimidine and new p-xylylenebis(thioacetic) acid

A. Ostasz^a, R. Łyszczek^a, L. Mazur^a, B. Tarasiuk^b

^aDepartment of General and Coordination Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, M.C. Skłodowska Sq. 2, 20-031 Lublin, Poland; ^bDepartment of Organic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, M.C. Skłodowska Sq. 2, 20-031 Lublin, Poland;

*Correspondence autor: email: a.ostasz@poczta.umcs.lublin.pl

The selected bond distances and angles are presented in Table S1 for the structures described in the present work.

Detailed peaks assignment for the free co-formers and each co-crystal is given in Table S2.

<i>р</i> -ХВТА		co-1		co-2		со-З	
bond lenght.	s /Å	-				-	
C1-01	1.322(2)	C1-01	1.310(3)	C1-01	1.309(3)	C1-01	1.323(2)
C1-O2	1.222(2)	C1-O2	1.225(3)	C1-O2	1.222(3)	C1-O2	1.219(2)
C1–C2	1.504(2)	C1-C2	1.518(3)	C1–C2	1.513(4)	C1–C2	1.504(2)
C2-S1	1.815(1)	C2-S1	1.821(2)	C2-S1	1.820(3)	C2-S1	1.814(2)
C3-S1	1.827(1)	C3-S1	1.834(2)	C3-S1	1.832(3)	C3-S1	1.828(2)
C3–C4	1.504(2)	C3–C4	1.509(3)	C3–C4	1.512(4)	C3–C4	1.502(2)
		C7-N2	1.337(3)	C7–N2	1.344(4)	C7–N2	1.336(3)
		C7-N1	1.361(3)	C7-N1	1.355(3)	C7-N1	1.357(2)
		C7-N3	1.359(3)	C7–N3	1.362(4)	C8-N1	1.347(2)
		C8-N3	1.337(3)	C8-N3	1.345(3)	C8–C9	1.384(2)
		C8–C9	1.404(3)	C8–C9	1.395(4)	C8-C10	1.496(2)
		C8-C11	1.499(3)	C8–C11	1.501(4)		
		C9–C10	1.380(3)	C9–C10	1.388(4)		

Table S1 Selected geometric parameters for *p*-XBTA acid and its co-crystals

		C10-N1	1.360(3)	C10-N1	1.356(3)		
		C10–C12	1.501(3)	C10–C12	1.495(4)		
bond angles /°							
02-C1-01	123.7(1)	02-C1-01	124.7(2)	02-C1-01	124.9(3)	02-C1-01	124.4(2)
02–C1–C2	122.2(1)	O2-C1-C2	122.2(2)	O2-C1-C2	121.9(2)	02–C1–C2	121.9(2)
01–C1–C2	114.1(1)	01–C1–C2	113.1(2)	01–C1–C2	113.2(2)	01–C1–C2	113.7(1)
C1C2S1	110.3(1)	C1C2S1	111.7(2)	C1C2S1	110.4(2)	C1C2S1	112.2(1)
C2-S1-C3	101.4(1)	C2-S1-C3	101.4(1)	C2-S1-C3	101.4(1)	C2-S1-C3	101.6(1)
C4-C3-S1	113.6(1)	C4-C3-S1	114.2(2)	C4–C3–S1	112.9(2)	C4-C3-S1	113.9(1)
C5-C4-C3	120.2(1)	C5–C4–C3	121.1(2)	C5–C4–C3	120.7(3)	C5–C4–C3	121.1(2)
C6-C4-C3	121.1(1)	C6 ⁱ -C4-C3	121.0(2)	C6-C4-C3	120.4(3)	C6 ⁱⁱ –C4–C3	120.4(2)
		N2-C7-N3	118.1(2)	N2-C7-N1	117.3(3)	N2-C7-N1	118.2(1)
		N2-C7-N1	118.0(2)	N2-C7-N3	118.4(3)	N1–C7–N1 ^{III}	123.6(2)
		N3-C7-N1	123.9(2)	N1-C7-N3	124.3(3)	N1-C8-C9	121.1(2)
		N3-C8-C9	122.0(2)	N3-C8-C9	122.3(3)	N1-C8-C10	116.4(2)
		N3-C8-C11	117.5(2)	N3-C8-C11	116.5(3)	C9–C8–C10	122.5(2)
		C9-C8-C11	120.4(2)	C9–C8–C11	121.2(3)	C8–C9–C8 ⁱⁱⁱ	118.3(2)
		C10-C9-C8	117.9(2)	C10–C9–C8	118.0(3)	C8-N1-C7	117.9(2)
		N1-C10-C9	120.6(2)	N1-C10-C9	120.4(3)		
		N1-C10-C12	116.4(2)	N1-C10-C12	117.1(2)		
		C9-C10-C12	122.9(2)	C9-C10-C12	122.5(3)		
		C10-N1-C7	118.1(2)	C7-N1-C10	118.3(2)		
		C8-N3-C7	117.4(2)	C8-N2-C7	116.7(4)		
torsion angles /°							
01-C1-C2-S1	-97.1(1)	01-C1-C2-S1	91.1(2)	01-C1-C2-S1	91.3(2)	01-C1-C2-S1	84.8(2)
C1-C2-S1-C3	-69.9(1)	C1-C2-S1-C3	-72.3(2)	C1-C2-S1-C3	-78.1(2)	C1-C2-S1-C3	-78.4(1)
C2-S1-C3-C4	-64.7(1)	C2-S1-C3-C4	-62.5(2)	C2-S1-C3-C4	-65.1(2)	C2-S1-C3-C4	-63.3(1)
S1-C3-C4-C5	97.1(1)	S1-C3-C4-C5	108.8(2)	S1-C3-C4-C6	99.0(3)	S1-C3-C4-C6 ⁱⁱ	102.6(2)
Symmetry codes: (i)1-x, -y, 1-z ; (ii)1/2-x, 1/2-y, 1-z ; (iii) -x, y, z							

Proposed assignment	DMP	р-ХВТА	co-1	co-2	co-3
v(OH)+v(C-H)	-	3200-2400	-	-	-
v(OH)	-	-	-	3449	-
$\nu_{as} NH_2$	3396 _m	-	3332	3324	3311
$\nu_s NH_2$	3306 _m	-	3170	3192	3180
v(NH)+v(C-H)	3181	-	3170	3204	3179
v(C _{ar} -H)	3080 _{vw}	3062 _{vw}	3082	3090	-
$\nu_{as}CH_2$	-	2968	2964	2964	2965
$v_s CH_2$	-	2947	-	-	2940
$v_{as}CH_3$	2922	-	2919	2925	2923
$\nu_s CH_3$	2850	-	2853	2853	-
v(OH)	-	2656,2548 _w	-	-	-
v(C=O)	-	1686 _{vs}	1683 _{vw}	1690 _{vw}	1694 _m
$v(C_{Ar}=C_{Ar})+\beta NH_{2scis}$	1632 _s	-	1656 _s	1646 _s	1670 _s
v(C _{Ar} =C _{Ar})	1590 _{vs}	-	1597	1596	1596
v(C=N)	1563 _{vs}	-	1575	1575	1569
v(C _{Ar} =C _{Ar})	-	1510	1511	1509	1511
$\beta_{as}CH_3+\nu(C_{Ar}=C_{Ar})$	1463 _{vs}	1468	-	1471	1464
$\beta_s CH_3$	1388 _s	-	1389 _{vw}	1385 _{vw}	1380 _{vw}
β(С-Н)	1368 _s	-	1373 _{vw}	1372 _{vw}	-
ν(C-N)	1338 _s	-	1346	1348 _w	1350
ν(C-O)+β(OH)	-	1280 _{sb}	1311	1315	1302
βCH_3	1242	-	1247 _w	1243 _w	1248 _w
β(С-Н)	-	1153	1153	1150	1153
β(С-Н)	-	1126	1128	1125	1131
β(С-Н)	-	1104	1096		1099
β (CH ₃) _{rock}	1030 _{m,} 1008	-	1032	1031	1023
βC-Ν	952 _m	-	-	957	957
γ(C _{Ar} -H)	-	848, 839	847	846	843
γ(N-H)	815 _w	-	-	-	816
γ(O-H)	-	916 _{sb}	-	-	-
γ(C-H)	793 _{vs}		790	790	801, 793,783
γ(С-Н)	-	693	704	700	700
γ(C-H)	-	669	673	671	672

 Table S2
 Bands in ATR-FTIR spectra of DMP, p-XBTA and co-crystals 1, 2 and 3

Abbreviations:

 $\boldsymbol{\nu}$ - stretching vibration

 β - in-plane deformation vibrations

 γ - *out- of- plane* deformation vibrations s: strong; m: medium; w:weak; v: very; b: broad