Supporting Information

Multi-functional Au/CdS/Fe₃O₄/RGO Hybrid Nanomaterials with Enhanced Photocatalytic Activity

Yunqing Luo,* Shanshan Fan, Nongyi Hao, Shuangling Zhong and Wencong Liu*

College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, P.R China

E-mail: <u>qyluo2014@163.com; chemliuwc@163.com</u>

Experimental Section:

Synthesis of GO:

GO was synthesized from natural graphite powder according to a modified Hummers method.²⁵ Briefly, 0.9 g of graphite powder was added into a mixture of 7.2 mL of 98% H₂SO₄, 1.5 g of K₂S₂O₈, and 1.5 g of P₂O₅. The solution was kept at 80 °C for 4.5 h, followed by thorough washing with water. Thereafter, the as-treated graphite was put into a 250 mL beaker, to which 0.5 g of NaNO₃ and 23 mL of H₂SO₄ (98%) were then added while keeping the beaker in the ice bath. Subsequently, 3 g of KMnO₄ was added slowly. After 5 min, the ice bath was removed and the solution was heated up to and kept at 35 °C under vigorous stirring for 2 h, followed by the slow addition of 46 mL of water. Finally, 40 mL of water and 5mL of H₂O₂ was added, followed by water washing and filtration. The exfoliation of graphene oxide was then dispersed in water (5 mg mL⁻¹) under ultrasonication for 2 h to yield a homogeneous suspension.

Synthesis of Fe_3O_4/RGO :

The whole synthetic process was taken under the protection of Ar. Typically, 155 mg FeCl₃ and 57 mg FeCl₂ were dissolved in 40 mL H₂O followed by added in 5 mL GO aqueous solution. Five minutes later, 0.5 mL NH₃H₂O was dropped into the mixture slowly. The solution was heated in an oil bath at 80 °C for one hour. After cooling down to room temperature naturally, the as-obtained products were collected directly by the help of a magnet.

Synthesis of CdS/Fe₃O₄/RGO:

0.6 mmol CdCl₂, 0.8 mmol Na₃Cit and 1.2 mmol thiourea were dissolved in H₂O to form a colorless solution. Then a solution prepared by dispersing of the as-prepared Fe₃O₄/RGO in 10 mL H₂O was dropped in. Ammonia (28 wt% in water) was used to adjust the pH to around 12. Finally, the mixture was heated in an oil bath at 70 °C for two hours.

Synthesis of Au/CdS/Fe₃O₄/RGO:

50 mg CdS/Fe₃O₄/RGO sample was dispersed in 30 mL water followed by boiling the water for 5 min. Then a mixed solution contained certain amount of HAuCl₄ (0.02M) and Na₃Cit with the molar ratio of 1/7 was injected into the solution. 30 min later, the reaction was stropped by removing the heating source. The products were washed with water for three times.

Characterization:

The X-ray diffraction pattern of the product was collected on a Rigaku-D/max 2500 V

X-ray diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å), with an operation voltage and current maintained at 40 kV and 40 mA. Transmission electron microscopic (TEM) images and high-resolution transmission electron microscopic (HRTEM) images were obtained using a TECNAI G2 highresolution transmission electron microscope operating at 200 kV. XPS measurement was performed on an ESCALAB-MKII 250 photoelectron spectrometer (VG Co.). X-ray radiation as the X-ray source for excitation.

Photocatalytic Measurement:

The photocatalytic performance of the as-obtained product was evaluated through the experiment of photocatalytic degradation of dyes under visible light irradiation. Typically, 20 mg sample was dispersed into 100 ml Methylene Green (MG) aqueous solution (0.01 mg/mL). The mixed suspensions were continuously stirred for 0.5 h in the dark to reach an adsorption-desorption equilibrium. Under the ambient conditions and stirring, the mixed suspensions were exposed to visible light irradiation produced

by a 400 W metal halogen lamp with a cut off filter ($\lambda \ge 420$ nm). At certain time

intervals, 2 ml of the mixed suspensions were extracted and centrifuged to remove the photocatalyst. The degradation process was monitored by measuring the absorption of MG in the filtrate at 652 nm using a UV-vis absorption spectrometer.

Fig. S1. TEM images of Fe₃O₄/RGO sample.

Fig. S2. TEM images of CdS/Fe₃O₄/RGO sample.

Fig. S3. EDX spectrum of CdS/Fe₃O₄/RGO sample.

Fig. S4. XRD data of pure CdS, CdS/Fe $_3O_4$ /RGO, Au/CdS/Fe $_3O_4$ /RGO-1,
Au/CdS/Fe $_3O_4$ /RGO-2,Au/CdS/Fe $_3O_4$ /RGO-3.

Fig. S5. XPS spectra of Au, Cd, C and S in Au/CdS/Fe₃O₄/RGO-1 sample.

Fig. S6. Time-online Photocatalytic degradation of MG by Au/CdS/Fe₃O₄/RGO-1.

Fig. S7. Time-online Photocatalytic degradation of RhB by Au/CdS/Fe₃O₄/RGO-1.

Fig. S8. Time-online Photocatalytic degradation of Eosin B by Au/CdS/Fe₃O₄/RGO-1.

Fig. S9. Time-online Photocatalytic degradation of Acid Fuchsin by $Au/CdS/Fe_3O_4/RGO-1$.

Fig. S10. cycling test of Au/CdS/Fe₃O₄/RGO-1.