ELECTRONIC SUPPLEMENTARY DATA

for

Temperature-induced one-dimensional chiral Ag(I) linear chain and left-handed 2₁ helix: DFT studies, luminescence and SHG response

Lin Cheng,^{a,b,*} Jun Wang,^{a,b} Qi Qi,^a Xiuying Zhang,^a Hai-Yan Yu,^a Shaohua Gou^{a,b*} and Lei

Fang^{a,b}

^a Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China

^b Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China

E-mail: lcheng@seu.edu.cn; sgou@seu.edu.cn; sgou@seu.edu.cn; sgou@seu.edu.cn; sgou@seu.edu.cn; sguu@seu.edu.cn; sguu@seu.edu.cn; sguu@seu.edu.cn; sguu@seu.edu.cn; sguu@seu.edu.cn; sguu@seu.edu.cn; sguu@seu.edu; sguu@seu.edu; sguu@seu; sguu@seu; sguu@seu; sguu@seu; sguu@seu; <a href="sguu@s

1. Procedure of the synthesis of (1*R*,2*R*)-3-bcpb

The mixture of (1R,2R)-2,3-pcd (1.48 g, 5 mmol), benzoyl chloride (1.69 g, 11 mmol), triethylamine (0.76 g, 7.5mmol) and toluene (50 mL) was refluxed for 15 hours. Then saturated NaCl solution (50 mL) was added to the cooled reaction. The layers were separated and the organic layer was dried over anhydrous MgSO₄, filtered and evaporated to give yellow oils. Water (80 mL) and ether (20 mL) were added to the oils and the mixture was refluxed for 3 hours, then cooled and white solids were precipitated. After washed by water and ether, the white products were collected and dried. Yiled: 54% (1.36 g). Anal. Calcd. (%) for $C_{32}H_{32}N_4O_2$: C 76.16, H 6.39, N 11.10; found: C 76.14, H 6.42, N 11.12. ESI MS: m/z: 505.26 [M+H]⁺, 527.24 [M+Na]⁺, 1031.49 [2M+Na]⁺. ESI-MS spectrum of (1*R*,2*R*)-3-bcpb was shown as the following:

Scheme S1 The *trans*- and *cis*- isomers of (1*R*,2*R*)-3-bcpb.

Fig. S1 The 2D hydrogen bonding network along the *ac* plane *via* interchain O-H···O hydrogen bonds in**1a**.

Fig. S2 The XRD patterns of **1a**, simulated from X-ray single crystal data (a) and polycrystalline as newly synthesized (b).

Fig. S3 The XRD patterns of 2a, simulated from X-ray single crystal data (a) and polycrystalline as newly synthesized (b).

Fig. S4 The XRD patterns of **1b**, simulated from X-ray single crystal data (a) and polycrystalline as newly synthesized (b).

Fig. S5 The XRD patterns of **2b**, simulated from X-ray single crystal data (a) and polycrystalline as newly synthesized (b).

Fig. S6 CD spectra of (1R,2R)-3-bcpb and the four CCPs in the solid state at room

temperature.

1a					
Ag1-O1W	2.613(8)	Ag1-N1	2.233(11)		
Ag1-O5	2.63 <mark>2</mark> (13)	Ag1-N4a	2.2 <mark>58</mark> (12)		
O1W-Ag1-O5	107. <mark>1</mark> (4)	O5-Ag1-N1	12 <mark>0.8</mark> (4)		
O1W-Ag1-N1	92. 5 (4)	O5-Ag1-N4a	84.0(4)		
O1W-Ag1-N4a	91.1(3)	N1-Ag1-N4a	152. 4 (4)		
2a					
Ag1-N1	2.165(5)	Ag1-N4b	2.147(5)		
N1-Ag1-N4b	167. <mark>55(19</mark>)				
1b					
Ag1-O1W	2.648(9)	Ag1-N4b	2.171(11)		
Ag1-N1	2.193(12)	O1W-Ag1-N1	93.3(4)		
O1W-Ag1-N4b	94.7(4)	N1-Ag1-N4b	160.5(4)		
2b					
Ag1-N1	2.181(10)	Ag1-N4a	2.147(9)		
N1-Ag1-N4a	168.6(4)				

Table S1. Selected bond lengths (Å) and angles (°) for 1a, 2a, 1b and 2b.

Symmetry code for **1a**: a, -1+x, y, -1+z; for **2a**: b, 5/2-x, 1-y, 1/2+z; for **1b**: b, 1+x, y, 1+z; for **2b**: a, -3/2-x, -1-y, -1/2+z.

D-H··· A	D-H [Å]	H…A [Å]	D…A [Å]	D-Н…А
				[°]]
		1a		
O1W-H1WB…O1d	0.85	2.16	2.822(13)	135
		2a		
01W H1WB02W	0.85	1.88	273(3)	174
	0.85	2.45	2.75(3)	174
	0.80	2.45	3.23(2)	1/0
O2W-H2WB····O3Ws	0.80	1.96	2.75(4)	167
O3W-H3WA…O1	0.80	1.98	2.77(3)	171
O3W-H3WB…O1W	0.70	2.45	2.8 <mark>6</mark> (4)	12 <mark>0</mark>
		1b		
O1W-H1WA…O2d	0.85	1.98	2.835(14)	179
O7-H7B…O1W	0.90	2.28	2.752(14)	113
		2b		
O1W-H1WA…O2	0.85	2.20	3.0 <mark>49</mark> (18)	179
O1W-H1WB…O2Ws	0.85	2.08	2.93(3)	177
O2W-H2WA…O3W	0.85	2.29	3.1 <mark>1</mark> (3)	16 <mark>1</mark>
O2W-H2WB…O4c	0.85	2.28	3.1 <mark>3(3)</mark>	17 <mark>8</mark>
O2W-H2WB…O6c	0.85	2.51	3.1 <mark>0</mark> (2)	12 <mark>8</mark>
O3W-H3WB…O1W	0.85	2.33	3. <mark>18</mark> (3)	17 <mark>9</mark>

Table S2. Selected Hydrogen Bond Lengths (Å) and Bond Angles (°) of 1a, 2a, 1b and 2b. (D, donor atom; A, acceptor atom).

Symmetry code for **1a**: d, -1+x, y, z. for **2a**: r, 7/2-x, 2-y, -1/2+; s, 1/2+x, 3/2-y, 1-z. for **1b**: d, x, y, 1+z. for **2b**:c, -1/2+x, -1/2-y, -z; s, -1/2+x, -3/2-y, -z.