Supporting Information

Morphology and crystalline-controlled synthesis of MnO₂ hierarchical nanostructures and their application in lithium ion batteries

Dongfei Sun,^{ab} Jiangtao Chen,^a Juan Yang ^a and Xingbin Yan,*ac

^a Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, P. R. China
^b Graduate University of Chinese Academy of Sciences, Beijing 100080, P.R. China
^c State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
* Corresponding author email: xbyan@licp.cas.cn. Fax: +869314968055.

Fig. S1 (a and b) SEM images of δ -MnO₂ nanostructure obtained without the electrospun templates.

Fig. S2 The adsorption-desorption isotherms of M1, M2 and M3.

Fig. S3 Raman spectra of the $\delta\text{-}MnO_2$ nanostructures.

Fig. S4 Electrochemical characterizations of α -MnO₂ electrodes. (a) The 1st discharge/charge voltage-capacity profiles of the MnO₂ nanostructures at the current density of 0.1 A g⁻¹. (b) The cycling stability of M2 and M3 electrodes at 0.1 A g⁻¹.