Supporting Information

Insights into Crystal Packing of Phosphorylporphyrins Based on Topology of Intermolecular Interaction Energies

Roman I. Zubatyuk, ${ }^{\text {a* }}$ Anna A. Sinelshchikova, ${ }^{\text {b }}$ Yulia Y. Enakieva, ${ }^{\text {b }}$ Yulia G. Gorbunova, ${ }^{\text {bc }}$ Aslan Y.

${ }^{a}$ SSI "Institute for Single Crystals" National Academy of Science of Ukraine, Kharkiv 61001, Ukraine.
${ }^{\mathrm{b}}$ A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow, 119071, Russia.
c N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow, 119991, Russia.
${ }^{\text {d }}$ Université de Bourgogne, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
${ }^{\mathrm{e}}$ V.N. Karazin Kharkiv National University, Kharkiv 61202, Ukraine.
E-mail: roman@xray.isc.kharkov.com

Synthesis and characterization of $1 \mathrm{Cd}, 1 \mathrm{Pd}, 1 \mathrm{Pt}$ and 1 Ni .

Unless otherwise noted, all chemicals and starting materials were obtained commercially from Acros and Sigma-Aldrich Co. and used without further purification. 5,15-bis(diethoxyphosphoryl)-10,20-diphenylporphyrin $\left(\mathbf{1 H}_{\mathbf{2}}\right)$ was synthesized according to the literature procedure (Y. Y. Enakieva, A. G. Bessmertnykh, Y. G. Gorbunova, C. Stern, Y. Rousselin, A. Y. Tsivadze, and R. Guilard, Org. Lett., 2009, 11, 3842). All reactions were performed in oven-dried glassware under a slight positive pressure of argon. Chloroform and methanol were freshly distilled before use. Silica gel 60 ($0.063-0.20 \mathrm{~mm}, 70-230$ mesh ASTM, Merck) and aluminum oxide ($0.063-0.20 \mathrm{~mm}$, basic, activated Brockmann II-III, Merck) was used for column chromatography. Analytical thin-layer chromatography (TLC) was carried out using Merck silica gel 60 plates (precoated sheets, 0.2 mm thick, with fluorescence indicator F254).
${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded at 300 MHz on a Bruker Avance 300 III NanoBay. All chemical shifts are given in ppm, referenced on the δ scale using residual solvent peak as internal standard for ${ }^{1} \mathrm{H}$, and phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ as external standard for ${ }^{31} \mathrm{P}$ NMR. Coupling constants are given in Hz . UV-visible spectra were recorded on a Varian Cary 100 spectrophotometer. Mass spectra were obtained in linear mode with a Bruker Proflex III MALDITOF mass spectrometer without matrix and accurate mass measurements (HRMS) using a Orbitrap ESI-TOF mass spectrometer. IR spectra were registered on a FT-IR Nexus (Nicolet) spectrometer using micro-ATR accessory (Pike). HRMS and FT-IR measurements were made at the "Pôle Chimie Moléculaire", the technological platform for chemical analysis and molecular synthesis (http://www.wpem.fr) which relies on the Institute of the Molecular Chemistry of University of Burgundy and Welience ${ }^{\mathrm{TM}}$, a Burgundy University private subsidiary.

CADMIUM(II) 5,15-BIS(DIETHOXYPHOSPHORYL)-10,20-DIPHENYLPORPHYRINATE (1CD). A solution of porphyrin $\mathbf{1 H}_{\mathbf{2}}\left(15.6 \mathrm{mg}, 2.12 \cdot 10^{-2} \mathrm{mmol}\right)$, cadmium acetate $\left(19.6 \mathrm{mg}, 8.50 \cdot 10^{-2} \mathrm{mmol}\right)$ and $\mathrm{NaHCO}_{3}(28.2 \mathrm{mg}, 0.336 \mathrm{mmol})$ in chloroform - methanol mixture ($2.85 \mathrm{ml}, 9 / 1 \mathrm{v} / \mathrm{v}$) was stirred at room temperature for 1.5 h . The volatiles were removed in vacuo. A green residue was purified by column chromatography on basic alumina using a mixture $\mathrm{CHCl}_{3} / \mathrm{MeOH}(99 / 1 \% \mathrm{v} / \mathrm{v})$ as eluent. Complex $\mathbf{1 C d}$ was obtained as a green solid ($17.2 \mathrm{mg}, 96 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 2 / 1 \mathrm{v} / \mathrm{v}, 25^{\circ} \mathrm{C}$): $\delta 1.17\left(\mathrm{t}, J=7.0,12 \mathrm{H}, \mathrm{CH}_{3}\right), 4.07-3.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.33-$ $4.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.59(\mathrm{~m}, 6 \mathrm{H}, m-, p-\mathrm{Ph}), 7.96(\mathrm{~d}, J=7.4,4 \mathrm{H}, o-\mathrm{Ph}), 8.56(\mathrm{~d}, J=4.7,4 \mathrm{H}, \beta-$
H), $9.88(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 2 / 1 \mathrm{v} / \mathrm{v}, 121 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta 25.4$ (s). FT-IR ($\nu_{\text {max }}, \mathrm{cm}^{-1}$): 2916(w), 2850(w), 1595(w), 1508(m), 1438(m), 1382(m), 1226(s), $1196(\mathrm{~s}), 1083(\mathrm{~m}), 1075(\mathrm{~m}), 1033(\mathrm{~m}), 983(\mathrm{~m}), 950(\mathrm{~s}), 885(\mathrm{~s}), 802(\mathrm{~m}), 754(\mathrm{~m}), 730(\mathrm{~m}), 700(\mathrm{~m})$, 665(m). UV-Vis $\left(\mathrm{CHCl}_{3}, \lambda_{\text {max }}, \mathrm{nm}(\lg (\varepsilon)): 430\right.$ (5.26), 572 (3.92), 610 (4.28). HRMS: m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{CdO}_{6} \mathrm{P}_{2} \mathrm{Na}: 869.12035$, found: 869.11603.

Palladium(II) 5,15-bis(Diethoxyphosphoryl)-10,20-diphenylporphyrinate (1Pd).

 Palladium(II) acetate ($14.4 \mathrm{mg}, 6.41 \cdot 10^{-2} \mathrm{mmol}$) was added to a solution of $\mathbf{1 H}_{\mathbf{2}}\left(11.8 \mathrm{mg}, 1.6 \cdot 10^{-2}\right.$ $\mathrm{mmol})$ in a mixture of $\mathrm{CHCl}_{3}(3 \mathrm{ml})$ and $\mathrm{CH}_{3} \mathrm{OH}(0.15 \mathrm{ml})$. The reaction mixture was stirred at reflux for 10 min . After cooling, the volatiles were evaporated under reduced pressure. A pink residue was dissolved in CHCl_{3} and purified by column chromatography on silica gel using hexane $/ \mathrm{CHCl}_{3}(40 / 60 \% \mathrm{v} / \mathrm{v})$ as eluent. The product was obtained as a pink solid $\mathbf{1 P d}(13.0 \mathrm{mg}$, $97 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta 1.35\left(\mathrm{t}, J=7.0,12 \mathrm{H}, \mathrm{CH}_{3}\right), 4.28-4.15(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.56-4.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.83-7.73(\mathrm{~m}, 6 \mathrm{H}, m-, p-\mathrm{Ph}), 8.11(\mathrm{~d}, J=7.0,4 \mathrm{H}, o-\mathrm{Ph})$, $8.86(\mathrm{~d}, J=5.2,4 \mathrm{H}, \beta-\mathrm{H}), 10.32(\mathrm{~d}, J=5.2,4 \mathrm{H}, \beta-\mathrm{H}) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 121 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta$ 21.0 (s). FT-IR ($v_{\max }, \mathrm{cm}^{-1}$): 2975(w), 2926(w), 1600(w), 1543(m), 1431(m), 1390(m), 1348(m), $1251(\mathrm{~s}), 1203(\mathrm{~m}), 1151(\mathrm{w}), 1092(\mathrm{~m}), 1000(\mathrm{~m}), 950(\mathrm{~s}), 883(\mathrm{~s}), 802(\mathrm{~s}), 750(\mathrm{~s}), 702(\mathrm{~s}), 665(\mathrm{~m})$. UV-Vis $\left(\mathrm{CHCl}_{3}, \lambda_{\text {max }}, \mathrm{nm}, \lg (\varepsilon)\right)$: 412(5.54), 538(4.28), 577(4.77). HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{PdO}_{6} \mathrm{P}_{2}$: 839.13889, found: 839.13525; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{PdO}_{6} \mathrm{P}_{2} \mathrm{Na}$: 861.12083, found: 861.11766 .PLATINUM(II) 5,15-BIS(DIETHOXYPHOSPHORYL)-10,20-DIPHENYLPORPHYRINATE (1PT). Platinum(II) chloride ($18 \mathrm{mg}, 6.76 \cdot 10^{-2} \mathrm{mmol}$) was added to a solution of porphyrin $\mathbf{1 H}_{\mathbf{2}}(25 \mathrm{mg}$, $\left.3.40 \cdot 10^{-2} \mathrm{mmol}\right)$ in benzonitrile (6 ml). The reaction mixture was stirred at reflux for 3 h . The volatiles were removed in vacuo. A pink residue was purified by column chromatography on silica gel using gradient elution of a hexane/ CHCl_{3} mixture. The fraction eluted using $75 / 25 \% \mathrm{v} / \mathrm{v}$ mixture of hexane/ CHCl_{3} gave after an evaporation of the solvents platinum(II) 5-mono(diethoxyphosphoryl)-10,20-diphenylporphyrinate (2Pt) $(4.3 \mathrm{mg}, 16 \%)$. The fraction eluted using $70 / 30 \% \mathrm{v} / \mathrm{v}$ mixture of hexane/ CHCl_{3} afforded complex 1Pt after evaporation of the solvents. Complex 1Pt was obtained as a pink solid ($24.4 \mathrm{mg}, 77 \%$).
1Pt. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta 1.36\left(\mathrm{t}, J=7.0,12 \mathrm{H}, \mathrm{CH}_{3}\right), 4.26-4.19(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.53-4.47\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.76(\mathrm{t}, J=7.3,4 \mathrm{H}, p-\mathrm{Ph}), 7.82(\mathrm{t}, J=7.1,2 \mathrm{H}, m-\mathrm{Ph}), 8.11(\mathrm{~d}$, $J=6.9,4 \mathrm{H} ; o-\mathrm{Ph}), 8.83(\mathrm{~d}, J=5.2,4 \mathrm{H}, \beta-\mathrm{H}), 10.29(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}) .{ }^{31} \mathrm{P}$ NMR
$\left(\mathrm{CDCl}_{3}, 121 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta 20.5(\mathrm{~s})$. FT-IR $\left(v_{\max }, \mathrm{cm}^{-1}\right): 2925(\mathrm{w}), 2854(\mathrm{w}), 1600(\mathrm{w}), 1530(\mathrm{w})$, 1440(m), 1390(w), 1354(m), 1253(s), 1160(m), 1085(m), 1005(vs), 945(vs), 884(s), 801(m), $750(\mathrm{~s}), 703(\mathrm{~m}), 665(\mathrm{~m}) . \mathrm{UV}-\mathrm{Vis}\left(\mathrm{CHCl}_{3}, \lambda_{\max }, \mathrm{nm}(\lg (\varepsilon)): 401(5,21), 532(3,97), 569(4,42)\right.$. HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{PtO}_{6} \mathrm{P}_{2}$: 928.19904, found: 928.19544; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{PtO}_{6} \mathrm{P}_{2} \mathrm{Na}: 950.17761$, found: 950.18098.
2Pt. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right): \delta 1.34\left(\mathrm{t}, J=7.1,6 \mathrm{H}, \mathrm{CH}_{3}\right), 4.30-4.17(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.56-4.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.79(\mathrm{~m}, 6 \mathrm{H}, m-, p-\mathrm{Ph}), 8.15(\mathrm{~d}, J=7.4,4 \mathrm{H}, o-\mathrm{Ph}), 8.85(\mathrm{~d}, J$ $=4.9,2 \mathrm{H}, \beta-\mathrm{H}), 8.90(\mathrm{~d}, J=5.5,2 \mathrm{H}, \beta-\mathrm{H}), 9.17(\mathrm{~d}, J=4.9,2 \mathrm{H}, \beta-\mathrm{H}), 10.12(\mathrm{~s}, 1 \mathrm{H}$, meso -H$)$, $10.37(\mathrm{~d}, J=5.4,2 \mathrm{H}, \beta-\mathrm{H}),{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right): \delta 21.76(\mathrm{~s}) . \mathrm{UV}-\mathrm{Vis}\left(\mathrm{CHCl}_{3}\right.$, $\lambda_{\max }, \mathrm{nm}(\lg (\varepsilon)): 396(5,12), 510(4,13), 548(4,25) . \mathrm{MS}$ (MALDI-TOF): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{PtO}_{3} \mathrm{P}: 791.16$, found 791.561 .

NICKEL(II) 5,15-BIS(DIETHOXYPHOSPHORYL)-10,20-DIPHENYLPORPHYRINATE (1NI). Method

A. Porphyrin $\mathbf{1 H}_{\mathbf{2}}\left(10.0 \mathrm{mg}, 1.36 \cdot 10^{-2} \mathrm{mmol}\right)$ and nickel(II) acetylacetonate $\left(14.0 \mathrm{mg}, 5.45 \cdot 10^{-2}\right.$ mmol) were dissolved in 2.5 ml of 1,2-dichlorobenzene. The reaction mixture was stirred at reflux for 5 min . After cooling, the reaction mixture was evaporated in vacuo. The violet residue was dissolved in CHCl_{3} and purified by column chromatography on silica gel using hexane/ CHCl_{3} $(15 / 85 \% \mathrm{v} / \mathrm{v})$ as an eluent. Complex $\mathbf{1 N i}$ was isolated as a violet solid after evaporation of the solvents in vacuo (10.6 mg , yield 99%). Method B. Porphyrin $\mathbf{1 H}_{\mathbf{2}}$ ($10.0 \mathrm{mg}, 1.36 \cdot 10^{-2} \mathrm{mmol}$) and nickel(II) acetate ($9.6 \mathrm{mg}, 5.43 \cdot 10^{-2} \mathrm{mmol}$) were dissolved in 2 ml of 1,2-dichlorobenzene. The reaction mixture was stirred at reflux for 45 min . The solvent was removed under reduced pressure. The violet residue was dissolved in CHCl_{3} and purified by column chromatography on silica gel using hexane $/ \mathrm{CHCl}_{3}(15 / 85 \% \mathrm{v} / \mathrm{v})$. Compound $\mathbf{1 N i}$ was isolated as a violet solid after evaporation of the solvents in vacuo (9.3 mg , yield 87%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 2 / 1 \mathrm{v} / \mathrm{v}, 300\right.$ $\mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$): $\delta 1.14\left(\mathrm{t}, J=7.1,12 \mathrm{H}, \mathrm{CH}_{3}\right), 4.03-3.87\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.16-4.07(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 7.50(\mathrm{~m}, 6 \mathrm{H}, m-, p-\mathrm{Ph}), 7.72(\mathrm{~d}, J=7.6,4 \mathrm{H}, o-\mathrm{Ph}), 8.52(\mathrm{~d}, J=5.1,4 \mathrm{H}, \beta-\mathrm{H}), 9.62(\mathrm{~d}, J=$ $5.2,4 \mathrm{H}, \beta$-H). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 2 / 1 \mathrm{v} / \mathrm{v}, 121 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta 19.6(\mathrm{~s})$. FT-IR ($v_{\max }, \mathrm{cm}^{-}$ $\left.{ }^{1}\right): 2980(\mathrm{w}), 2900(\mathrm{w}), 1600(\mathrm{w}), 1535(\mathrm{~m}), 1436(\mathrm{~m}), 1390(\mathrm{~m}), 1348(\mathrm{~m}), 1253(\mathrm{~s}), 1203(\mathrm{~m})$, 1158(m), 1092(m), 1013(s), 963(s), 888(s), 808(m), 750(s), 696(m), 663(m). UV-Vis $\left(\mathrm{CHCl}_{3}\right.$, $\left.\lambda_{\max }, \mathrm{nm}, \lg (\varepsilon)\right): 417(5.22)$, 553(3.92), 597(4.32). HRMS: $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{NiO}_{6} \mathrm{P}_{2}$: 790.16146, found: 790.15959; $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{NiO}_{6} \mathrm{P}_{2}$: 791.16928, found: 791.16544; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{NiO}_{6} \mathrm{P}_{2} \mathrm{Na}$: 813.15123, found: 813.14623.

Molecular structure of metal porphyrinates

Three of the studied complexes 1Cd, 1Pd, 1Pt crystallized without solvent molecules while the crystal of $\mathbf{1 N i}$ contains solvate molecules of hexane. In all structures, the metal ion is a nearly perfect square-planar coordination defined by the four nitrogen atoms of the porphyrin macrocycle and the bond distance are determined by the nature of the metal ion. The shortest $\mathrm{M}-$ N bonds (1.885(6), 1.897(6), 1.909(6), 1.907(5) \AA) are observed for electron-deficient nickel(II) complex in which the deviation of planar geometry of NiN_{4} fragment did not exceed $+/-0.020 \AA$. Considerable non-planarity of the porphyrin ring is observed for $\mathbf{1 N i}$. A four-saddle conformation of the macrocycle is observed with dihedral angles between mean planes of four N atoms and pyrrole rings of $21.2-22.3^{\circ}$ (maximal deviations of C_{β} atoms from the N_{4} plane are $-0.690-0.570$ \AA). Such non-planarity is common for nickel porphyrinates and was also observed for $1 \mathbf{C u}(\mathbf{c})$, however with much lower values of distortion angles i.e. 9.3-15.2 ${ }^{\circ}$. In all structures, phosphoryl bond lies almost in the mean plane of porphyrin forming an intramolecular $\mathrm{C}-\mathrm{H} . . \mathrm{O}$ hydrogen bond with C_{β} atom of the porphyrin. In non-planar $\mathbf{1 N i}$ complex, the phosphoryl groups are located significantly far away from the N4 plane and situated out-side of the saddle porphyrinic scaffold at a distance of $-1.287 \AA$ and $1.342 \AA$. This geometry is reflected by the value of dihedral angles of the phosphoryl group $\mathrm{CCC}-\mathrm{O}=\mathrm{P}$ which are equal to 10.1° and 12.9°.

In $1 \mathbf{C d}$, additional coordination bonds in axial direction are formed with phosphoryl group of the neighboring molecule, giving rise a of 2 D polymeric structure $(\mathrm{Cd}-\mathrm{O}$ distance is $2.6253(14) \AA$. The crystalline structure of this complex is similar to those of $\mathbf{1 C u (b)}$ and $\mathbf{1 Z n}$, already described by our groups.

It should be noted, that $\mathbf{1 P t}$ is isostructural to complexes $\mathbf{1 C d}, \mathbf{1 C u}(\mathbf{b})$ and $\mathbf{1 Z n}$ (Tables 1 and $\mathrm{S} 1)$. However, the significant difference in the orientation of substituents with respect to the tetrapyrrolic macrocycle was observed for this compound compared to other complexes. In 1Pt the phenyl ring is rotated by more than 80° with respect to the porphyrin plane, compared to $62-$ 65° in the other structures. Moreover, even more prominent difference between these structures is the absence of axial coordination in 1Pt and the orientation of the oxygen atom of phosphoryl group away from the metal center of an adjacent porphyrin molecule.

In all the discussed structures, except for porphyrin $\mathbf{1 H}_{\mathbf{2}}$ and its $\mathrm{Ni}(\mathrm{II})$ complex, molecules are located in a special position, metal ions lie on a two-fold axis $(\mathbf{1 C u (c))}$) or on an inversion center $(\mathbf{1 C u}(\mathrm{a}), \mathbf{1 C u}(\mathrm{b}), \mathbf{1} \mathbf{C d}, \mathbf{1 Z n}, 1 \mathrm{Pd}, 1 \mathrm{Pt})$.

Table S1 Unit cell dimensions and crystal symmetry for $\mathbf{1 H 2}, \mathbf{1 C u (a)}, \mathbf{1 C u (b)}, \mathbf{1 C u (c)}$ and $\mathbf{1 Z n}$.

	1H2	$1 \mathrm{Cu}(\mathrm{a})$	1Cu(b)	$1 \mathrm{Cu}(\mathrm{c})$	1Zn
formula	$\begin{gathered} \mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}_{2}, \\ 2 \mathrm{CHCl}_{3} \end{gathered}$	$\begin{gathered} \mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Cu} \\ 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \end{gathered}$	$\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Cu}$	$\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Cu}$	$\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Zn}$
F_{w} crystal	973.44 triclinic	972.43 triclinic	796.22 monoclinic	796.22 monoclinic	798.05 monoclinic
system					
space	P-1	P-1	$\mathrm{P} 21 / \mathrm{c}$	C2/c	$\mathrm{P} 21 / \mathrm{c}$
group					
$a[\AA]$	11.0237(7)	9.657(2)	12.3787(6)	19.565(6)	12.4813(4)
$b[\AA]$	13.8769(9)	11.280(3)	$11.7319(5)$	20.676(7)	11.4995(4)
$c[\AA]$	16.0768(11)	11.705(3)	12.2028(6)	9.063(3)	12.1377(5)
$\alpha\left[{ }^{\circ}\right]$	77.8890(10)	71.456(4)	90	90	90
$\beta\left[{ }^{\circ}\right]$	70.4290 (10)	72.223(4)	91.8580(10)	94.445(5)	91.668(2)
$\gamma\left[{ }^{\circ}\right]$	84.0270(10)	77.807(4)	90	90	90
$\mathrm{V}\left[\AA^{3}\right]$	2264.2(3)	1141.9(5)	1771.23(14)	3655(2)	1741.37(11)
Z	2	1	2	4	2

Table S2 Numbering of dimers, type of dimers, symmetry operation of second molecule of dimer and energy of intermolecular interactions ($\mathrm{kcal} / \mathrm{mol}$) in dimers formed by the basic molecule in the crystal $\mathbf{1 H}_{\mathbf{2}}$. Dimers belonging to basic structural motif are highlighted in bold.

Dimer	Symmetry operation	Type ${ }^{\text {a }}$	Eint
1	$\mathbf{x , y , z}$	P...C1	-8.9
2	$\mathbf{x}, \mathbf{y}, \mathrm{z}$	P...C2	-8.4
3	$\mathrm{x}, \mathrm{y}, 1+\mathrm{z}$	P...C2	-2.6
4	x,y,-1+z	P...C1	-3.7
5	1+x,y,z	P...P	-12.4
6	1+x,y,z	P...C2	-0.9
7	$1+x, y,-1+z$	P...P	-6.7
8	$1+\mathrm{x}, \mathrm{y},-1+\mathrm{z}$	P...C1	-1.3
9	$-1+x, y, z$	P...P	-12.4
10	$-1+x, y, z$	P...C1	-1.1
11	$-1+x, y, 1+z$	P...P	-6.7
12	$-1+x, y, 1+z$	P...C2	-1.4
13	-x,-y, 1-z	P...P	-2.0
14	-x,-y, 2-z	P...P	-16.6
15	-x,-y, 2-z	P...C1	-1.6
16	$1-x,-y, 1-z$	P...P	-10.0
17	1-x,-y, $2-\mathrm{z}$	P...P	-10.9
18	1-x,-y,2-z	P...C1	-6.9
19	1-x,1-y,1-z	P...C2	-7.9
20	1-x,1-y,1-z	P...P	-9.3
21	$1-x, 1-y, 2-z$	P...P	-9.8
22	2-x,1-y,1-z	P...C2	-2.0
23	2-x,1-y,1-z	P...P	-13.6
24	$2-x, 1-y, 2-z$	P...P	-1.8
25	$\mathbf{x}, \mathbf{y}, \mathbf{z}$	C1...P	-8.9
26	$\mathbf{x}, \mathbf{y}, 1+\mathbf{z}$	C1...P	-3.7
27	$\mathbf{x}, \mathbf{y}, \mathbf{1 + z}$	C1...C2	-0.9
28	1+x,y,z	C1...P	-1.1
29	$-1+x, y, 1+z$	C1...P	-1.3
30	-x,-y, 2-z	C1...P	-1.6
31	1-x,-y, $2-\mathrm{z}$	C1...P	-6.9
32	x,y,z	C2...P	-8.4
33	x,y,-1+z	C2...C1	-0.9
34	x,y,-1+z	C2...P	-2.6
35	$\mathbf{1 + x , y , - 1 + z}$	C2... P	-1.4
36	-1+x,y,z	C2... P	-0.9
37	1-x,1-y,1-z	C2...P	-7.9
38	2-x,1-y,1-z	C2...P	-2.0

${ }^{\text {a }} \mathrm{P}, \mathrm{C} 1$ and C 2 correspond to porphyrin and two symmetry unique chloroform molecules

Table S3 Numbering of dimers, type of dimers, symmetry operation of second molecule of dimer and energy of intermolecular interactions ($\mathrm{kcal} / \mathrm{mol}$) in dimers formed by the basic molecule in the crystal $\mathbf{1 C u (a)}$. Dimers belonging to basic structural motif are highlighted in bold.

Dimer	Symmetry operation	Type ${ }^{\text {a }}$	Eint
1	$\mathbf{x , y , z}$	P...D	-12.4
2	$\mathbf{x}, \mathbf{y}, 1+\mathbf{z}$	P...P	-11.1
3	$\mathbf{x}, \mathbf{y},-1+\mathbf{z}$	P...P	-11.1
4	$\mathbf{x}, \mathbf{y}, \mathbf{- 1 + z}$	P...D	-1.3
5	$\mathrm{x}, 1+\mathrm{y}, \mathrm{z}$	P...P	-10.5
6	$\mathrm{x}, 1+\mathrm{y}, \mathrm{z}$	P...D	-3.8
7	$\mathrm{x}, 1+\mathrm{y}, 1+\mathrm{z}$	P...P	-1.6
8	$\mathbf{x}, \mathbf{1}+\mathbf{y},-\mathbf{1}+\mathbf{z}$	P...D	-1.6
9	$\mathrm{x},-1+\mathrm{y}, \mathrm{z}$	P...P	-10.5
10	$\mathrm{x},-1+\mathrm{y},-1+\mathrm{z}$	P...P	-1.6
11	1+x,y,z	P...P	-10.5
12	$\mathbf{1 + x}, \mathbf{y},-1+z$	P...P	-15.9
13	$1+\mathrm{x}, 1+\mathrm{y},-1+\mathrm{z}$	P...P	-7.3
14	-1+x,y,z	P...P	-10.5
15	$-1+x, y, z$	P...D	-5.1
16	$-1+x, y, 1+z$	P...P	-15.9
17	$-1+x, y, 1+z$	P...D	-0.8
18	$-1+x,-1+y, 1+z$	P...P	-7.3
19	-x,-y,-z	P...D	-12.4
20	-x,-y, 1-z	P...D	-1.3
21	-x,-1-y,-z	P...D	-3.8
22	-x,-1-y,1-z	P...D	-1.6
23	1-x,-y,-z	P...D	-5.1
24	1-x,-y,-1-z	P...D	-0.8
25	$\mathbf{x}, \mathbf{y}, \mathbf{z}$	P...P	-12.4
26	$\mathbf{x}, \mathbf{y}, 1+\mathbf{z}$	P...P	-1.3
27	$\mathrm{x},-1+\mathrm{y}, \mathrm{z}$	P...P	-3.8
28	$\mathrm{x},-1+\mathrm{y}, 1+\mathrm{z}$	P...P	-1.6
29	1+x,y,z	P...P	-5.1
30	1+x,y, $\mathbf{- 1 + z}$	P...P	-0.8
31	1-x,-1-y,-z	P...D	-2.3
${ }^{\text {a }} \mathrm{P}$, and D correspond to porphyrin and dioxane molecules			

Table S4 Numbering of dimers, type of dimers, symmetry operation of second molecule of dimer and energy of intermolecular interactions ($\mathrm{kcal} / \mathrm{mol}$) in dimers formed by the basic molecule in the crystal 1Ni. Dimers belonging to basic structural motif are highlighted in bold.

Dimer	Symmetry operation	Type ${ }^{\text {a }}$	Eint ${ }^{\text {b }}$	
			A	B
1	x,y,z	P...H	-11.6	-11.6
2	$\mathbf{x}, 1+y, z$	P...P	-9.5	-7.1
3	$\mathbf{x},-1+\mathbf{y}, \mathrm{z}$	P...H	-2.2	-2.3
4	$\mathbf{x},-1+\mathbf{y}, \mathrm{z}$	P...P	-9.5	-7.1
5	$1+\mathrm{x}, \mathrm{y}, \mathrm{z}$	P...P	-7.6	-7.5
6	$1+\mathrm{x}, \mathrm{y}, \mathrm{z}$	P...H	-1.1	-1.1
7	$1+\mathrm{x}, \mathrm{y}, 1+\mathrm{z}$	P...P	-3.3	-3.4
8	$-1+x, y, z$	P...P	-7.6	-7.5
9	$-1+x, y,-1+z$	P...P	-3.3	-3.4
10	-x,1-y,-z	P...P	-18.2	-19.4
11	-x, 1-y, 1-z	P...P	-11.6	-11.5
12	-x,2-y,-z	P...P	-23.1	-23.6
13	-x,2-y,1-z	P...P	-9.7	-9.7
14	$1-x, 1-y, 1-z$	P...P	-4.6	-4.5
15	$1-x, 2-y, 1-z$	P...P	-12.8	-12.8
16	-1-x, 1-y,-z	P...P	-12.2	-14.0
17	-1-x,2-y,-z	P...P	-2.6	-2.6
18	x,y,z	H...P	-11.6	-11.6
19	$\mathbf{x}, 1+\mathrm{y}, \mathrm{z}$	H...P	-2.2	-2.3
20	-1+x,y,z	H...P	-1.1	-1.1
21	-x, 1-y, 1-z	H...P	-2.2	-2.3
22	-x,2-y,1-z	H...P	-11.6	-11.6
23	1-x,2-y,1-z	H...P	-1.1	-1.1
${ }^{\text {a }} \mathrm{P}$, and H correspond to porphyrin and hexane molecules ${ }^{\mathrm{b}}$ For two disordered positions A and B of the porphyrin molecule				

Table S5 Numbering of dimers, symmetry operation of second molecule of dimer and energy of intermolecular interactions ($\mathrm{kcal} / \mathrm{mol}$) in dimers formed by the basic molecule in the crystal $\mathbf{1 C u}(\mathbf{c})$.
Dimers belonging to basic structural motif are highlighted in bold.

Dimer	Symmetry operation	Eint
1	$\mathbf{x}, \mathbf{y}, 1+\mathrm{z}$	-4.3
2	$\mathbf{x}, \mathbf{y},-1+z$	-4.3
3	x, $1+\mathrm{y}, \mathrm{z}$	-0.4
4	$\mathrm{x},-1+\mathrm{y}, \mathrm{z}$	-0.4
5	$1 / 2+x, 1 / 2+y, z$	-3.4
6	$1 / 2+x, 1 / 2+y, 1+z$	-1.2
7	$1 / 2+x,-1 / 2+y, z$	-3.4
8	1/2+x,-1/2+y, $1+\mathrm{z}$	-1.2
9	$-1 / 2+x, 1 / 2+y, z$	-3.4
10	$-1 / 2+\mathrm{x}, 1 / 2+\mathrm{y},-1+\mathrm{z}$	-1.2
11	$-1 / 2+x,-1 / 2+y, z$	-3.4
12	-1/2+x, -1/2+y,-1+z	-1.2
13	-x,-y, 1-z	-1.4
14	-x,-y, 2-z	-1.4
15	-x, 1-y, 1-z	-51.4
16	-x, 1-y, $2-\mathrm{z}$	-51.4
17	1/2-x,1/2-y,1-z	-1.4
18	1/2-x,1/2-y,2-z	-15.0
19	1/2-x,1/2-y,3-z	-1.3
20	-1/2-x, 1/2-y,-z	-1.3
21	-1/2-x, 1/2-y,1-z	-15.0
22	-1/2-x, 1/2-y,2-z	-1.4

Table S6 Numbering of dimers, symmetry operation of second molecule of dimer and energy of intermolecular interactions ($\mathrm{kcal} / \mathrm{mol}$) in dimers formed by the basic molecule in the crystal 1Pd. Dimers belonging to basic structural motif are highlighted in bold.

Dimer	Symmetry operation	Eint
1	$1+\mathrm{x}, \mathrm{y}, \mathrm{z}$	-7.0
2	$-1+\mathrm{x}, \mathrm{y}, \mathrm{z}$	-7.0
$\mathbf{3}$	$-\mathbf{x}, \mathbf{y}, \mathbf{2} / \mathbf{2 - z}$	$\mathbf{- 2 4 . 6}$
4	$-\mathrm{x}, \mathrm{y}, \mathbf{3} / 2-\mathrm{z}$	-7.9
5	$1-\mathrm{x}, \mathrm{y}, 1 / 2-\mathrm{z}$	-7.9
$\mathbf{6}$	$\mathbf{1 - x , y , 3 / 2 - z}$	$\mathbf{- 2 4 . 6}$
7	$1 / 2+\mathrm{x}, 1 / 2+\mathrm{y}, \mathrm{z}$	-16.1
8	$1 / 2+\mathrm{x},-1 / 2+\mathrm{y}, \mathrm{z}$	-9.3
9	$-1 / 2+\mathrm{x}, 1 / 2+\mathrm{y}, \mathrm{z}$	-9.3
10	$-1 / 2+\mathrm{x},-1 / 2+\mathrm{y}, \mathrm{z}$	-16.1
11	$1 / 2-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}$	-7.7
12	$1 / 2-\mathrm{x}, 1 / 2+\mathrm{y}, 3 / 2-\mathrm{z}$	-7.7
13	$1 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}$	-7.7
14	$1 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 3 / 2-\mathrm{z}$	-7.7

Table S7 Numbering of dimers, symmetry operation of second molecule of dimer and energy of intermolecular interactions ($\mathrm{kcal} / \mathrm{mol}$) in dimers formed by the basic molecule in the crystals $\mathbf{1 C u}(\mathbf{b})$,
$\mathbf{1 Z n}, 1 \mathbf{C d}$ and 1Pt. Dimers belonging to basic structural motif are highlighted in bold.

Dimer	Symmetry operation	Eint						
		$1 \mathrm{Cu}(\mathrm{b})$		1 Zn		1 Cd	1 Pt	
		A	B	A	B		A	B
1	$\mathbf{x}, \mathbf{y}, 1+\mathbf{z}$	-6.6	-6.6	-4.8	-4.2	-5.5	-11.7	-11.4
2	$\mathbf{x}, \mathbf{y},-1+\mathbf{z}$	-6.6	-6.6	-4.8	-4.2	-5.5	-11.7	-11.4
3	$\mathbf{x , 1 + y , z}$	-2.3	-2.1	-2.1	-3.2	-2.4	-0.7	-0.7
4	$\mathbf{x},-1+\mathbf{y}, \mathrm{z}$	-2.3	-2.1	-2.1	-3.2	-2.4	-0.7	-0.7
5	$1+\mathrm{x}, \mathrm{y}, \mathrm{z}$	-6.0	-6.0	-6.0	-5.9	-5.9	-7.8	-7.8
6	$1+x, 1+y, z$	-2.8	-2.8	-0.5	-0.6	-2.8	-1.1	-1.1
7	$1+x,-1+y, 1+z$	-0.4	-0.5	-3.0	-2.9	-0.5	-0.3	-0.3
8	$-1+x, y, z$	-6.0	-6.0	-6.0	-5.9	-5.9	-7.8	-7.8
9	$-1+x, 1+y,-1+z$	-0.4	-0.5	-3.0	-2.9	-0.5	-1.1	-1.1
10	-1+x,-1+y,z	-2.8	-2.8	-0.5	-0.6	-2.8	-0.3	-0.3
11	-x, $1 / 2+y, 1 / 2-z$	-6.6	-6.7	-6.4	-4.2	-6.5	-5.2	-5.0
12	-x,-1/2+y, 1/2-z	-6.6	-6.7	-6.4	-4.2	-6.5	-5.2	-5.0
13	1-x, $1 / 2+y, 1 / 2-z$	-25.2	-26.2	-30.1	-29.5	-30.9	-23.8	-22.6
14	1-x, $1 / 2+\mathrm{y}, 3 / 2-\mathrm{z}$	-25.2	-26.2	-30.1	-29.5	-30.9	-23.8	-22.6
15	1-x,-1/2+y,1/2-z	-25.2	-26.2	-30.1	-29.5	-30.9	-23.8	-22.6
16	1-x,-1/2+y,3/2-z	-25.2	-26.2	-30.1	-29.5	-30.9	-23.8	-22.6
17	$2-x, 1 / 2+y, 3 / 2-z$	-6.6	-6.7	-6.4	-4.2	-6.5	-5.2	-5.0
18	$2-x,-1 / 2+y, 3 / 2-z$	-6.6	-6.7	-6.4	-4.2	-6.5	-5.2	-5.0

Fig S1 ${ }^{1} \mathrm{H}$ NMR for $\mathbf{1 C d}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 2 / 1 \mathrm{v} / \mathrm{v}, 25^{\circ} \mathrm{C}\right)$

Fig S2 ${ }^{31} \mathrm{P}$ NMR for $\mathbf{1 C d}\left(\mathrm{CDCl} 3 / \mathrm{CD} 3 \mathrm{OD}, 2 / 1 \mathrm{v} / \mathrm{v}, 121 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

Fig S3 ${ }^{1} \mathrm{H}$ NMR for $\mathbf{1 P t}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

Fig S4 ${ }^{31} \mathrm{P}$ NMR for $\mathbf{1 P t}\left(\mathrm{CDCl}_{3}, 121 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

Fig S5 ${ }^{1} \mathrm{H}$ NMR for $\mathbf{1 P d}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

Fig S6 ${ }^{31} \mathrm{P}$ NMR for $\mathbf{1 P d}\left(\mathrm{CDCl}_{3}, 121 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

Fig S7 ${ }^{1} \mathrm{H}$ NMR for $\mathbf{1 N i}\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 2 / 1 \mathrm{v} / \mathrm{v}, 300 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

Fig S8 ${ }^{31} \mathrm{P}$ NMR for $\mathbf{1 N i}\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 2 / 1 \mathrm{v} / \mathrm{v}, 121 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

