Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information for the manuscript

Biguanide and squaric acid as pH-dependent building blocks in crystal engineering.

by Mihaela-Diana Şerb, Irmgard Kalf, Ulli Englert

- Table S1.Complete table of hydrogen bonds
- Fig. S1. ADP plot of the asymmetric unit in **1b**
- Fig. S2. ADP plot of the asymmetric unit in 1c
- Fig. S3. ADP plot of the asymmetric unit in 1d
- Fig. S4. ADP plot of the asymmetric unit in **2a**
- Fig. S5. ADP plot of the asymmetric unit in **2b**
- Fig. S6. ADP plot of the asymmetric unit in **3a**
- Fig. S7. ADP plot of the asymmetric unit in **3b**
- Fig. S8. ADP plot of the asymmetric unit in **3c**
- Fig. S9. ADP plot of the asymmetric unit in **3d**
- Fig. S10. Experimental and simulated powder patterns for 2a
- Fig. S11. Experimental and simulated powder patterns for 2b
- Fig. S12. Experimental and simulated powder patterns for 3c
- Fig. S13. Experimental and simulated powder patterns for 3d

<i>D</i> —H···· <i>A</i>	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···· A
		1a		
O(1)-H(1)···O(6)	1.048(4)	1.421(4)	2.447(3)	164.6(4)
O(5)-H(5)···O(2)	1.022(4)	1.569(4)	2.568(3)	164.5(4)
$N(2)-H(2)\cdots O(4)^{i}$	1.034(4)	1.779(4)	2.742(2)	153.2(3)
N(5)-H(5B)····O(3)	1.019(4)	1.788(4)	2.743(2)	154.5(3)
$N(3)-H(3B)\cdots O(4)^i$	1.017(4)	1.893(4)	2.789(2)	145.2(3)
$N(5)-H(5A)\cdots O(7)^{ii}$	1.023(4)	1.838(4)	2.822(2)	160.5(4)
$N(3)-H(3A)\cdots O(8)^{ii}$	1.014(4)	1.849(4)	2.824(2)	160.1(3)
$N(4)-H(4A)\cdots O(3)^{iii}$	1.015(4)	1.900(4)	2.856(2)	155.7(4)
N(4)-H(4A) ···N(5)	1.015(4)	2.456(5)	2.9061(16)	106.1(3)
N(5)-H(5B)···N(4)	1.019(4)	2.479(4)	2.9061(16)	104.5(2)
$N(4)-H(4B)\cdots O(7)^{iv}$	1.010(4)	2.068(5)	3.008(2)	154.1(4)

Table S1. Complete table of hydrogen bonds (Å ,°); non-classical contacts with $D \cdots A > 3.1$ Å have not been included.

i = -1 + x, -1 + y, z; ii = x, y, 1 + z; iii = 2 - x, 1 - y, 2 - z; iv = 2 - x, 1 - y, 1 - z

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	<i>D</i> —H··· <i>A</i>
		1b		
$O(5)-H(151)\cdots O(1)^{i}$	0.86(3)	1.92(4)	2.664(3)	144(4)
$O(5)-H(150)\cdots O(6)^{ii}$	0.83(2)	1.87(2)	2.697(3)	177(4)
N(2)–H(20)····O(5)	0.91(2)	1.82(2)	2.717(3)	166(2)
N(5)-H(50)····O(4)	0.90(2)	1.88(3)	2.763(3)	164(2)
O(6)–H(161)····O(2)	0.85(3)	1.92(3)	2.768(3)	171(3)
O(6)–H(160)····O(2) ⁱⁱⁱ	0.86(3)	1.93(3)	2.783(3)	173(3)
N(3)-H(30)····O(3)	0.92(2)	1.89(2)	2.792(3)	165(2)
N(4)–H(41)····O(3) ^{iv}	0.893(18)	1.942(19)	2.804(3)	162(3)
$N(3)-H(31)\cdots O(4)^{\nu}$	0.894(19)	1.964(19)	2.833(3)	164(3)
$N(5)-H(51)\cdots O(1)^{i}$	0.90(3)	1.99(3)	2.866(3)	164(2)
$N(4)-H(40)\cdots O(4)^{iii}$	0.87(2)	2.04(2)	2.882(3)	162(3)
N(4)-H(40)···N(3)	0.87(2)	2.55(3)	2.932(3)	107(2)
N(3)-H(31)····N(4)	0.894(19)	2.56(3)	2.932(3)	106(2)

i=2-x, 1-y, -1/2+z; ii=x, 1+y, z; iii=3/2-x, y, -1/2+z; iv=1-x, 1-y, -1/2+z; v=-1/2+x, 1-y, z.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
		1c			
N(7)-H(70)···O(3) ^{<i>i</i>}	0.908(15)	1.738(16)	2.609(2)	159.9(19)	
$N(2)-H(20)\cdots O(1)^{ii}$	0.949(16)	1.692(16)	2.621(2)	165.3(19)	
$O(9)-H(109)\cdots O(7)^{iii}$	0.89(4)	2.05(3)	2.700(2)	129(3)	
$O(10)-H(210)\cdots O(5)^{iv}$	0.901(17)	1.825(17)	2.723(2)	175.2(18)	
$N(10)-H(100)\cdots O(9)^{\nu}$	0.880(16)	1.898(17)	2.738(3)	159(2)	
$N(4)-H(41)\cdots O(8)^{iii}$	0.934(18)	1.832(18)	2.759(2)	171.3(17)	
N(3)-H(30)···O(10) ^{vi}	0.913(16)	1.893(17)	2.764(3)	159(2)	
$N(5)-H(51)\cdots O(2)^{ii}$	0.935(17)	1.859(17)	2.772(2)	165(2)	
N(8)–H(81)····O(5) ⁱⁱⁱ	0.94(2)	1.85(2)	2.777(2)	167.1(19)	
$N(9)-H(90)\cdots O(6)^{vii}$	0.937(19)	1.860(19)	2.792(2)	172.7(19)	
$N(8) - H(80) \cdots O(4)^{i}$	0.842(16)	1.981(16)	2.807(2)	166.9(16)	
O(9)−H(209)····O(3)	0.876(19)	1.944(19)	2.812(3)	171(2)	
$N(5)-H(50)\cdots O(7)^{vi}$	0.894(16)	2.040(16)	2.871(2)	153.9(14)	
N(10)–H(101)····O(6) ⁱⁱⁱ	0.87(2)	2.17(2)	2.876(2)	137.3(16)	
O(10)–H(110)····O(1)	0.82(2)	2.14(2)	2.878(2)	151(3)	
$N(4)-H(40)\cdots O(4)^{iii}$	0.92(2)	2.02(2)	2.898(2)	160.7(19)	
$N(9)-H(91)\cdots O(2)^{vi}$	0.917(18)	2.073(17)	2.905(2)	150.2(18)	
N(3)-H(31)····O(7) ^{vi}	0.91(2)	2.23(2)	2.974(2)	139.5(18)	
$N(3)-H(31)\cdots O(8)^{vi}$	0.91(2)	2.46(3)	3.099(2)	128.1(18)	
C(9)–H(9C)···N(4)	0.98	2.45	2.793(3)	100	
C(10)-H(10C)···N(2)	0.98	2.38	2.785(3)	104	
C(14)−H(14A)…N(7)	0.98	2.41	2.785(3)	102	

Table S1.Complete table of hydrogen bonds (Å ,°) - continued

i = -1 + x, -1 + y, z; ii = -x, -1/2 + y, 1 - z; iii = 1 - x, -1/2 + y, 1 - z; iv = 1 - x, 1/2 + y, 1 - z; v = 1 - x, -1/2 + y, 2 - z;

 $v_i = x, -1+y, z; v_{ii} = x, -1+y, 1+z.$

D—H···A	<i>D</i> —Н	H····A	$D \cdots A$	D—H···A
		1d		
O(3)–H(3A)····O(1)	0.857(16)	1.923(18)	2.7455(18)	161(2)
$N(3)-H(30)\cdots O(3)^{i}$	0.894(17)	1.956(18)	2.809(2)	159.1(15)
$O(3)-H(3B)\cdots N(2)^{ii}$	0.864(18)	1.997(18)	2.8517(18)	170(2)
N(5)-H(50)···O(1)	0.877(17)	2.010(18)	2.877(2)	169.8(15)
N(3)–H(31)···O(2) ⁱⁱⁱ	0.864(16)	2.104(16)	2.9036(17)	153.7(14)
$N(4) - H(40) \cdots O(2)^{i}$	0.886(17)	2.080(18)	2.9447(18)	164.9(15)
N(4)–H(41)···O(2) ^{iv}	0.877(16)	2.164(17)	2.9779(18)	154.1(14)
N(5)–H(51)····O(3) ⁱⁱⁱ	0.879(19)	2.368(18)	3.204(2)	159.1(19)
C(3)-H(3E)···N(2)	0.98	2.38	2.756(2)	102

Table S1. Complete table of hydrogen bonds (Å ,°) - continued

 i = x,1+y,z; ii = 1-x,1-y,1-z; iii = -x,1-y,1-z; iv = -x,1-y,-z.

D—H····A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
		2a		
$O(1)-H(1)\cdots O(6)^{i}$	0.87(2)	1.64(2)	2.496(3)	168(4)
$N(6)-H(60)\cdots O(6)^{ii}$	0.91(2)	1.80(2)	2.706(3)	172(2)
N(7)–H(70)····O(8)	0.85(3)	1.91(2)	2.706(3)	155(2)
N(9)–H(90)····O(4) ^{<i>iii</i>}	0.92(2)	1.85(2)	2.744(3)	163(2)
N(10)–H(101)····O(3) ^{<i>iv</i>}	0.945(19)	1.857(18)	2.774(3)	163(3)
N(10)-H(100)···O(7)	0.94(2)	1.886(19)	2.810(3)	169(2)
N(8)–H(81)····O(2) ^{iv}	0.92(2)	1.91(2)	2.832(3)	172(2)
$O(30)-H(30C)\cdots O(6)^{\nu}$	0.84	2.49	2.845(8)	107
N(1)-H(10)····O(7)	0.92(2)	1.94(2)	2.846(3)	165(3)
$N(5)-H(51)\cdots O(8)^{vi}$	0.93(2)	1.963(19)	2.873(3)	165(3)
N(3)–H(31)····O(5) ^{vi}	0.93(2)	1.98(2)	2.892(3)	166(2)
N(3)–H(30)····O(2) ^{vii}	0.93(2)	2.05(3)	2.931(3)	158(3)
N(5)–H(50)····O(4) ^{iv}	0.90(2)	2.05(2)	2.946(3)	173(2)
N(4)–H(40)····O(1) ^{vii}	0.90(2)	2.21(2)	2.972(3)	142(2)
N(8)–H(80)····O(5) ^{<i>ii</i>}	0.90(2)	2.11(2)	2.978(3)	161(2)
N(4)-H(41)····N(3)	0.88(3)	2.55(2)	2.991(4)	112(2)
N(9)–H(91)····O(3)	0.91(3)	2.13(3)	3.007(3)	162(2)
O(30)–H(30C)····O(1) ^{viii}	0.84	2.36	3.178(7)	163
C(10)–H(10A)····N(2)	0.95	2.32	2.894(4)	118

Table S1. Complete table of hydrogen bonds (Å , $^{\circ}$) - continued

i = 1-x, 1/2+y, 1/2-z; ii = x, 3/2-y, 1/2+z; iii = 1-x, 2-y, 1-z; iv = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; v = -x, -1/2+y, 1/2-z; vi = 1-x, 1-y, 1-z; vi = 1-x, 1-z; vi = 1-

= x, -1+y, z; vii = 1-x, -1/2+y, 1/2-z; viii = -1+x, -1+y, z.

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	<i>D</i> —H…A
		2b		
N(6)-H(160)····O(2)	0.940(18)	1.854(19)	2.766(2)	163.1(18)
$N(4) - H(141) \cdots O(4)^{i}$	0.933(18)	1.879(19)	2.790(2)	164.9(18)
N(10)-H(201)····O(2) ^{<i>ii</i>}	0.887(18)	1.936(18)	2.811(2)	168.8(18)
N(5)-H(150)···O(4) ⁱⁱⁱ	0.931(18)	1.929(18)	2.835(2)	163.7(16)
N(8)-H(180)···O(1) ^{<i>ii</i>}	0.93(2)	1.94(2)	2.856(2)	167.8(18)
N(3)-H(131)····O(3) ⁱⁱⁱ	0.909(19)	2.025(19)	2.911(2)	164.5(17)
$N(5)-H(151)\cdots N(7)^{iv}$	0.847(17)	2.079(17)	2.921(3)	173.1(17)
$N(3)-H(130)\cdots O(1)^{i}$	0.880(18)	2.15(2)	2.952(2)	151.2(18)
$N(4)-H(140)\cdots O(1)^{\nu}$	0.903(19)	2.137(19)	2.954(2)	150.2(19)
N(8)-H(181)····O(3)	0.90(2)	2.09(2)	2.968(2)	165.1(19)
N(9)-H(190)···O(3) ^{v_i}	0.91(2)	2.073(19)	2.973(2)	172(2)
N(8)-H(181)····N(6)	0.90(2)	2.58(2)	3.013(3)	109.9(17)
N(3)-H(130)···N(4)	0.880(18)	2.59(2)	3.013(3)	110.2(16)
N(10)–H(200)····N(2) ^{iv}	0.943(19)	2.076(19)	3.018(3)	177.3(16)
N(9)-H(191)····O(2)	0.910(19)	2.50(2)	3.147(2)	128.8(17)
C(9)–H(9)…N(2)	0.95	2.34	2.923(3)	120
C(17)−H(17)····N(7)	0.95	2.57	3.081(3)	114

Table S1. Complete table of hydrogen bonds (Å ,°) - continued

i = -x, 1-y, 1-z; ii = 1+x, y, z; iii = 1-x, 1-y, 1-z; iv = 1-x, 2-y, 1-z; v = x, y, -1+z; vi = 1-x, 2-y, 2-z.

D—H···A	<i>D</i> —Н	H····A	$D \cdots A$	D—H···A
		3 a		
N(2)-H(120)····O(3)	0.906(15)	1.751(15)	2.6410(19)	166.5(16)
N(1)-H(110)····O(5)	0.873(17)	1.872(17)	2.711(2)	160.5(17)
$N(4)-H(141)\cdots O(1)^{i}$	0.898(18)	1.874(18)	2.7358(19)	160.3(16)
O(5)–H(5A)····O(1)	0.838(18)	1.947(18)	2.7842(18)	178(2)
$O(5)-H(5B)\cdots O(1)^{ii}$	0.860(18)	1.97(2)	2.8060(18)	163(2)
$N(4) - H(140) \cdots O(2)^{i}$	0.936(17)	2.164(18)	2.813(2)	125.5(15)
N(3)-H(130)····O(2) ⁱⁱⁱ	0.899(18)	1.974(18)	2.847(2)	163(2)
N(3)-H(131)····O(4)	0.915(19)	1.974(19)	2.8856(19)	175(2)
N(5)-H(150)····O(4) ^{<i>iv</i>}	0.907(17)	2.001(17)	2.888(2)	165.5(17)
$N(5)-H(151)\cdots O(5)^{\nu}$	0.885(17)	2.133(17)	2.908(2)	145.9(15)
N(4)-H(141)····N(5)	0.898(18)	2.612(17)	2.951(2)	103.3(13)

Table S1. Complete table of hydrogen bonds (Å , $^{\circ}$) - continued

i = x, 1/2-y, -1/2+z; ii = 2-x, -y, 1-z; iii = 1+x, 1/2-y, -1/2+z; iv = x, 1/2-y, 1/2+z; v = 2-x, 1/2+y, 1/2-z.

D—H···A	D—H	H····A	$D \cdots A$	<i>D</i> —H···A
		3b		
$N(12)-H(112)\cdots O(11)^{i}$	0.892(16)	1.780(16)	2.651(3)	165(2)
N(7)-H(107)···O(8)	0.91(2)	1.77(2)	2.655(3)	166(3)
N(2)–H(102)···O(10) ^{<i>ii</i>}	0.899(19)	1.797(19)	2.691(3)	173(2)
N(14)–H(214)····O(3)	0.92(2)	1.85(2)	2.717(3)	158(2)
N(9)–H(209)····O(5) ⁱⁱⁱ	0.93(2)	1.84(2)	2.748(3)	167(2)
N(8)-H(108)····O(6)	0.90(3)	1.91(2)	2.753(3)	157(2)
$N(1)-H(101)\cdots O(9)^{ii}$	0.88(2)	1.89(2)	2.754(3)	166(2)
O(14)–H(24O)····O(9)	0.894(18)	1.879(18)	2.758(2)	168(3)
N(8)–H(208)···· O(7)	0.92(2)	1.85(2)	2.762(3)	173(3)
N(5)–H(205)···· O(14) ^{<i>iv</i>}	0.89(3)	1.88(3)	2.764(3)	174(3)
N(11)-H(111)····O(13)	0.89(2)	1.98(2)	2.778(3)	150(2)
$N(13)-H(213)\cdots O(12)^{i}$	0.91(2)	1.89(2)	2.785(3)	169(2)
$N(4)-H(104)\cdots O(1)^{\nu}$	0.90(2)	2.06(2)	2.793(3)	138(2)
$N(3)-H(203)\cdots O(1)^{ii}$	0.91(3)	2.03(2)	2.801(3)	142(2)
N(9)–H(109)····O(6) ⁱⁱⁱ	0.91(3)	2.18(3)	2.805(3)	126(2)
N(6)-H(106)O(15)	0.90(2)	2.00(2)	2.811(3)	150(2)
$N(13)-H(113)\cdots O(4)^{ii}$	0.92(2)	1.97(2)	2.820(3)	153(2)
$N(5)-H(105)\cdots O(2)^{vi}$	0.90(3)	1.94(3)	2.823(3)	163(2)
O(13)–H(23O)····O(5) ^{vii}	0.88(3)	1.96(3)	2.824(2)	168(3)
O(13)–H(13O)····O(5)	0.89(3)	1.94(3)	2.825(2)	173(3)
N(10)-H(210)···O(12)	0.89(2)	1.95(2)	2.831(3)	174(2)
O(15)–H(15O)····O(3) ^{viii}	0.85(2)	1.99(2)	2.834(3)	172(3)
N(14)-H(114)····O(4)	0.91(3)	2.13(3)	2.839(3)	134(2)
$N(15)-H(115)\cdots O(10)^{ii}$	0.89(2)	1.99(2)	2.853(3)	162(2)
O(14)–H(14O)····O(8)	0.859(18)	2.06(2)	2.862(2)	155(2)
$N(4)-H(204)\cdots O(2)^{\nu}$	0.93(3)	2.06(3)	2.870(3)	146(2)
$O(15)-H(25O)\cdots O(1)^{ix}$	0.85(3)	2.04(3)	2.888(3)	176(3)
$N(15)-H(215)\cdots O(4)^{ii}$	0.90(2)	2.15(3)	2.952(3)	149(2)
N(15)-H(115)···N(14)	0.89(2)	2.53(2)	2.956(4)	109.9(17)

Table S1.Complete table of hydrogen bonds (Å ,°) - continued

N(14)-H(214)····N(15)	0.92(2)	2.59(3)	2.956(4)	104.4(17)
$N(10)-H(110)\cdots O(13)^{x}$	0.92(2)	2.25(2)	2.996(3)	138(2)
N(3)-H(103)····O(3)	0.890(19)	2.20(2)	3.004(3)	151(2)
N(4)-H(104)····N(5)	0.90(2)	2.62(3)	3.048(4)	109.8(17)
$N(11)-H(111)\cdots O(11)^{i}$	0.89(2)	2.54(2)	3.066(3)	119(2)
C(31)–H(31B)····N(11)	0.98	2.42	2.880(3)	108

i = 1+x, 1+y, z; ii = 1+x, y, z; iii = -1+x, y, z; iv = 1-x, 1-y, -z; v = 1-x, 2-y, -z; vi = 2-x, 2-y, -z; vii = 2-x, 2-x, -z; vii = 2-x, 2-x, -z; vii = 2-x, 2-x, -

x,1-y,1-z; $v_{iii} = -1+x, -1+y, z; ix = x, -1+y, z; x = 1-x, 1-y, 1-z.$

D—H····A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
		3c		
$O(1)-H(1)\cdots O(6)^{i}$	0.906(16)	1.607(16)	2.5120(14)	177(3)
N(7)–H(70)····O(8)	0.892(16)	1.890(17)	2.7432(15)	159.6(18)
$N(9)-H(90)\cdots O(4)^{ii}$	0.885(16)	2.042(16)	2.7865(17)	141.0(15)
N(10)-H(101)····O(7)	0.903(16)	1.902(16)	2.7940(15)	169.1(19)
N(8)–H(80) \cdots O(2) ^{<i>iii</i>}	0.908(15)	1.906(15)	2.8072(15)	171.3(16)
N(4)–H(40A)····O(7) ^{<i>iv</i>}	0.899(17)	1.966(17)	2.8223(17)	158.6(17)
$N(6)-H(60)\cdots O(6)^{\nu}$	0.887(17)	1.983(17)	2.8245(15)	158.1(17)
$N(10)-H(100)\cdots O(3)^{iii}$	0.891(16)	1.964(16)	2.8424(16)	168.8(16)
$N(8)-H(80A)\cdots O(5)^{\nu}$	0.886(16)	2.008(15)	2.8486(15)	157.8(14)
$N(3)-H(30A)\cdots O(2)^{i}$	0.890(18)	2.011(18)	2.8775(17)	164.3(17)
N(9)-H(90A)····O(3)	0.889(17)	2.032(18)	2.8775(17)	158.6(17)
N(3)-H(30)···O(5)	0.895(16)	2.012(16)	2.8826(16)	164.0(16)
N(5)–H(50A)····O(8)	0.890(16)	2.023(15)	2.9019(17)	169.0(18)
$N(4)-H(40)\cdots O(5)^{i}$	0.878(14)	2.118(14)	2.9646(18)	161.7(16)
$N(5)-H(50)\cdots O(4)^{ii}$	0.884(16)	2.204(16)	3.0521(17)	160.8(18)
N(9)–H(90)···O(6) ^{v}	0.885(16)	2.499(18)	3.1005(17)	125.8(13)
$N(1)-H(10)\cdots O(1)^{i}$	0.875(17)	2.352(17)	3.1289(17)	148.0(17)
C(18)–H(18A)…N(6)	0.98	2.58	2.930(3)	101

Table S1. Complete table of hydrogen bonds (Å ,°) - continued

i = 1-x, 1/2+y, 1/2-z; ii = 1-x, 2-y, 1-z; iii = 1-x, 1-y, 1-z; iv = x, 1+y, z; v = x, 3/2-y, 1/2+z.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	<i>D</i> —Н…А
		3d		
N(4)-H(41)····N(1)	0.929(14)	1.923(14)	2.6541(17)	134.0(12)
$N(2)-H(20)\cdots O(1)^{i}$	0.878(15)	1.912(15)	2.7602(15)	162.1(14)
$N(4)-H(40)\cdots O(2)^{ii}$	0.903(13)	1.947(13)	2.8399(16)	169.7(14)
$N(3)-H(30)\cdots O(1)^{iii}$	0.892(14)	1.992(14)	2.8609(16)	164.2(13)
$N(3)-H(31)\cdots O(2)^{i}$	0.908(14)	2.003(14)	2.8990(16)	169.0(13)
$N(5)-H(50)\cdots O(1)^{i}$	0.872(14)	2.217(15)	2.9663(18)	143.8(12)

Table S1. Complete table of hydrogen bonds (Å ,°) - continued

i = 1/2-x, 1/2+y, 1/2-z; ii = -x, 2-y, -z; iii = x, 1+y, z.

Fig. S1. ADP plot of the asymmetric unit in **1b**

Fig. S2. ADP plot of the asymmetric unit in 1c

Fig. S4. ADP plot of the asymmetric unit in **2a**

Fig. S6. ADP plot of the asymmetric unit in **3a**

Fig. S8. ADP plot of the asymmetric unit in **3c**

Fig. S10. Experimental and simulated powder patterns for 2a

Fig. S11. Experimental and simulated powder patterns for 2b

Fig. S12. Experimental and simulated powder patterns for 3c

Fig. S13. Experimental and simulated powder patterns for 3d