SUPPORTING INFORMATION

Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate

I. Spanopoulos,^a I. Bratsos,^b Ch. Tampaxis,^b A. Kourtellaris,^c A. Tasiopoulos, ^c G. Charalambopoulou,^b T.A. Steriotis^b and P.N. Trikalitis^{*a}

^a Department of Chemistry, University of Crete, Voutes 71003 Heraklion, Greece ^b National Center for Scientific Research Demokritos, Terma Patriarchou Gregoriou & Neapoleos, Athens 15310, Greece ^c University of Cyprus, Department of Chemistry, CY-1678 Nicosia, Cyprus

Corresponding author: Pantelis N. Trikalitis Email: ptrikal@chemistry.uoc.gr

Table of Contents

Powder X-ray diffraction	S2
¹ H NMR measurement	S 3
Thermal gravimetric analysis (TGA)	S4
Gas sorption Measurements and Analyses	S3-S13
References	S13

Powder X-ray diffraction

Figure S1. Calculated (a) and experimental powder X-ray diffraction pattern of the as-made material **1** (b). Calculated pxrd pattern of the evacuated solid **1'** (c) and the corresponding experimental pattern of **1'** after gas-sorption measurements, including NH₃ (d). The pxrd pattern of re-solvated solid **1'** with DMF (e). In this case the pxrd pattern was indexed using TREOR available within WinPLOTR¹ software and unit cell refinement was performed with the program CELREF.²

¹H NMR measurements

Figure S2. ¹H NMR spectrum of **1** after EtOH exchange and dissolving it in D₂O solution using HCl.

Figure S3. ¹H NMR spectrum of **1** after evacuating the sample at 240 °C and dissolving it in D_2O solution using HCl.

Thermal gravimetric analysis (TGA)

Figure S4. TGA curve for the as-made **1** and the corresponding evacuated solid **1**', recorded under Ar flow with a heating rate of 5 deg/min.

Gas sorption measurements and analyses

Determination of BET surface area and pore size distribution using NLDFT

The apparent BET surface area in **1'** was determined using constancy criteria which requires that not only the quantity of *C* must be positive but also the application of BET equation should be limited to the pressure range where the term $V(1-(P/P_o))$ continuously increases as a function of P/P_o (V is the amount adsorbed in cm³ g⁻¹). This procedure is the proper method for BET surface area calculations in MOFs³ and is recommended in a very recent standard of the International Standard Organization (ISO).⁴

Figure S5. Hydrogen sorption isotherm of 1' recorded at 77 K.

Figure S6. Argon sorption isotherm of **1'** recorded at 87 K, immediately after the hydrogen sorption at 77 K shown above.

Figure S7. Hydrogen sorption isotherm of 1' recorded at 87 K.

Figure S8. Three (3) point BET, N_2 sorption measurement at 77 K of **1'** after the hydrogen sorption at 87 K shown above.

Figure S9. Nitrogen sorption isotherm at 77 K of **1**', the BASF magnesium formate sample and **1**' prepared by heating an EtOH exchanged **1** to 240 °C overnight (5 point BET measurement).

Figure S10. Nitrogen kinetic adsorption data of 1' at 77 K for the indicated equilibrium points.

Figure S11. BET plot for 1' from N_2 adsorption isotherm.

Figure S12. BET plot for 1' from Ar adsorption isotherm.

Figure S13. Langmuir plot for 1' from N₂ adsorption isotherm.

Figure S14. Langmuir plot for 1' from Ar adsorption isotherm.

Figure S15. Argon adsorption isotherm of 1' recorded at 87 K and the corresponding NLDFT fitting.

Figure S16. H_2 isosteric heat of adsorption in **1'** as a function of surface coverage.

Figure S17. High pressure CO_2 adsorption isotherms of **1'** at the indicated temperatures.

Figure S18. High pressure excess CH_4 adsorption isotherms of 1' at the indicated temperatures.

Figure S19. High pressure excess N_2 adsorption isotherms of 1' at the indicated temperatures.

Figure S20. Ammonia sorption isotherms of 1' at 298 K and 273 K up to 1 bar. Before each measurement the sample was reactivated at 240 °C overnight.

Figure S21. NH_3 isosteric heat of adsorption in 1' as a function of surface coverage.

References

¹ Roisnel, T. and Rodríguez-Carvajal, J., "WinPLOTR: a windows tool for powder diffraction pattern analysis," *Materials Science Forum*, **2001**, *378–381*, 118–123.

² LMGP-Suite Suite of Programs for the interpretation of X-ray Experiments, by Jean laugier and Bernard Bochu, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. WWW: http://www.inpg.fr/LMGP and <u>http://www.ccp14.ac.uk/tutorial/Imgp/.</u>

³ J. Moellmer, E. B. Celer, R. Luebke, A. J. Cairns, R. Staudt, M. Eddaoudi, M. Thommes, *Micropor. Mesopor. Mater*, 2010, **129**, 345.

⁴ ISO-FDIS 9277:2010.