Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2014

Supporting information

Peptide Turns Through Just 'One Atom'! Sulfamide Group Nucleates Folding and Stabilizes New Supramolecular Topologies in Short Peptides

Pushparathinam Gopinath, Venkatachalam Ramkumar and Kannoth Manheri Muraleedharan * Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036 – INDIA

Ta	Table of Contents Pa			
1.	Crystallographic summary for compounds 1a-d	2		
2.	Details of secondary interactions in the crystal structures of 1a-d	3-5		
3.	Arrangement of hydrophobic side chains in the lattices of 1b & 1c	6		
4.	Arrangement of molecules in the lattice of 1d along a axis	6		
5.	Synthetic sequence used to prepare sulfamido peptides 1a-1d	7		
6.	Experimental procedures, spectral- and analytical data	7-10		
7.	¹ H and ¹³ C NMR spectra of compound 2a	11		
8.	¹ H and ¹³ C NMR spectra of compound 2b	12		
9.	¹ H and ¹³ C NMR spectra of compound 2c	13		
10.	¹ H and ¹³ C NMR spectra of compound 1a	14		
11.	¹ H and ¹³ C NMR spectra of compound 1b	15		
12.	¹ H and ¹³ C NMR spectra of compound 1c	16		
13.	¹ H and ¹³ C NMR spectra of compound 1d	17		

Table 1. Crystallographic summary for compounds 1a-1d

Compounds	1a	1b	1c	1d
Chemical formula	C ₂₂ H ₄ N ₄ O ₈ S	C ₂₄ H ₄₆ N ₄ O ₈ S	C ₂₆ H ₅₀ N ₄ O ₈ S	C ₁₄ H ₂₆ N ₄ O ₈ S
Formula weight	522.67	550.71	578.76	410.45
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Triclinic
a (Å)	15.675(2)	9.1689(4)	10.551(3)	4.9125(2)
B (Å)	18.849(5)	15.8240(5)	15.765(5)	9.3729(4)
C (Å)	19.855(5)	21.6607(10)	20.395(5)	12.3508(5)
α (°)	90	90	90	110.316(2)
β (°)	90	90	90	90.313(2)
γ (°)	90	90	90	100.2330(10)
Temperature	298(2) K	273(2) K	298(2) K	298(2) K
V (A ³)	5867(2)	3142.7(2)	3392.4(16)	523.43(4)
Space group (No)	P2(1)2(1)2(1)	P2(1)2(1)2(1)	P2(1)2(1)2(1)	P1
Z	4	4	4	1
Total reflections	7962	11534	5719	7806
Independent reflections	3199	6066	2538	4364
Final R value	0.0496	0.0743	0.0536	0.0371
CCDC Number	980490	980491	980493	1009176

Details of secondary interactions in the crystal structures of 1a-d

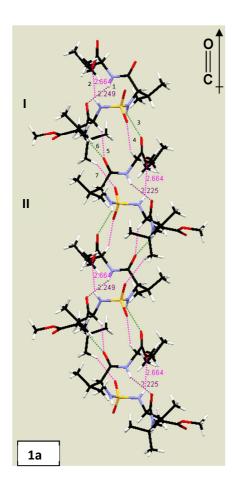
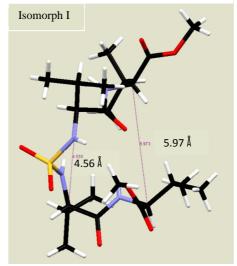

I. Dival sulfamide 1a

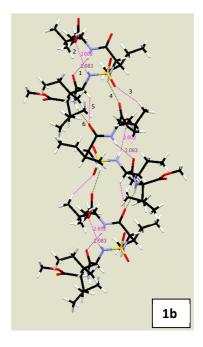
Table 2. Important hydrogen bond lengths and angles in the assembly of isomorphs I and II


Bonds	Atoms involved	Bond length(Å)	Bond angle (degrees)
1 ^a	N_2 'H ··· O_1	2.249	147.84
2	N ₁ HO ₃ '	2.664	132.12
3	N ₁ 'HO ₂ '	2.440	133.01
4	C ₂ 'HO ₁ =S	2.638	152.98
5	C ₁ H···O ₁ '	2.529	135.29
6	N ₂ H ··· O ₁ '	2.113	153.75
7 ^b	$C_{2\beta}H\cdots O_2=S$	2.553	150.61

 $^{^{}a}$ For isomorph II, the N₂'H ··· O₁ bond length is 2.225 Å and the angle is 148°;

 $^{^{\}text{b}}$ $\text{C}_{2\beta}\text{H}$ represent the hydrogen atom of the methyl group of second Valine residue

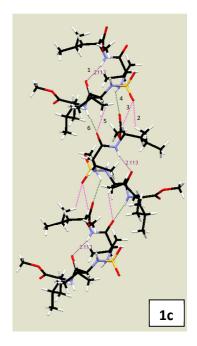
Distances between $C\alpha$ carbons at 1,1'-and 2,2' positions



II. Dilleu sulfamide 1b

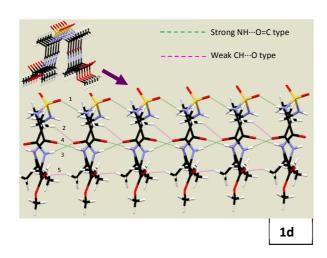
Table 2. Important secondary interactions which stabilize the lattice of 1b

Bonds	Atoms involved	Bond length	Bond angle (degrees)
1	N ₂ 'HO ₁	2.083	158.12
2	N ₁ HO ₃ '	2.602	134.73
3	C ₂ ' _γ HO ₁ =S	2.666	155.37
4	N ₁ 'H···O ₂ '	2.297	133.47
5	C ₁ HO ₁ '	2.563	133.39
6	N ₂ H···O ₁ '	2.030	163.63


 $C_{2\gamma}$ H represents the hydrogen atom attached to the CH $_3$ group of the second lleu residue

III. ValLeu sulfamide 1c

Table 3. Important secondary interactions which stabilize the lattice of ${\bf 1c}$


	1		1
Bonds	Atoms involved	Bond length	Bond angle (degrees)
1	$N_2'H\cdots O_1$	2.113	156.95
2	N ₁ HO ₃ '	2.540	132.38
3	$C_{2\delta}'H\cdots O_1=S$	2.699	122.42
4	C ₂ 'H···O ₁ =S	2.652	137.89
5	N ₁ 'H···O ₂ '	2.330	132.82
6	$C_1H\cdots O_1'$	2.613	134.41
7	N ₂ H····O ₁ '	2.024	170.28

IV Diala sulfamide 1d

Table 4. Important secondary interactions which stabilize the lattice of 1d

Bonds	Atoms involved	Bond length	Bond angle (degrees)
1	$N_1H\cdots O_1=S$	2.072	153.50
2	$C_1H\cdots O_1$	2.591	148.57
3	$N_2H\cdots O_1$	2.120	172.87
4	N ₂ 'H···O ₁ '	2.084	176.15
5	C _{2β} 'H···O ₃ '	2.564	156.09

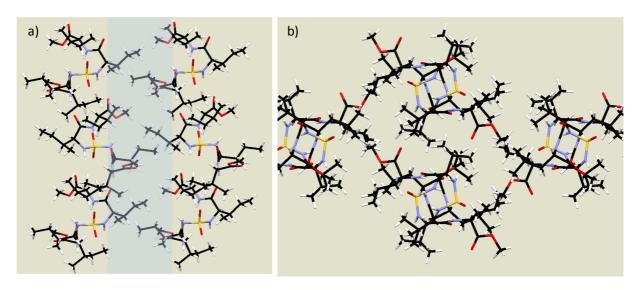


Figure 1. a) Arrangement of hydrophobic side chains in-between the helical stacks of **1b**; b) shows the clustering of side chains in between the helical assemblies of **1c**.

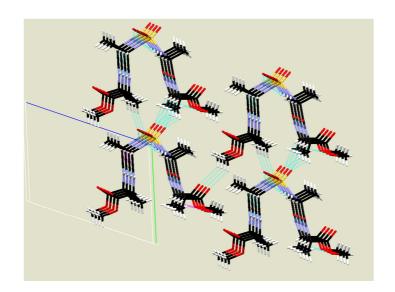


Figure 2. Arrangement of molecules in the lattice of 1d along a axis

Scheme 1: Synthetic sequence used to prepare sulfamido peptides 1a-1d

$$SO_{2}Cl_{2} + H_{2}N CO_{2}Me$$

$$R_{1} CO_{2}Me$$

$$R_{2} CO_{2}Me$$

$$R_{2} CO_{2}Me$$

$$R_{3}CO CO_{2}Me$$

$$R_{4}CO CO_{2}Me$$

$$R_{2} CO_{2}Me$$

$$R_{2} CO_{2}Me$$

$$R_{3}CO CO_{2}Me$$

$$R_{4}CO CO_{2}Me$$

$$R_{4}CO CO_{2}Me$$

$$R_{5}CO_{2}Me$$

$$R_{6}CO_{2}Me$$

$$R_{7}CO_{2}Me$$

$$R_{1}CO_{2}Me$$

$$R_{1}CO CO_{2}Me$$

$$R_{1}CO_{2}Me$$

$$R_{1}CO_{2}Me$$

$$R_{2}CO_{2}Me$$

$$R_{1}CO_{2}Me$$

$$R_{2}CO_{2}Me$$

$$R_{1}CO_{2}Me$$

$$R_{2}CO_{2}Me$$

$$R_{1}CO_{2}Me$$

$$R_{2}CO_{2}Me$$

$$R_{1}CO_{2}Me$$

$$R_{1$$

General procedure for the syntheses of compounds 2a-2c

These starting materials (2a-2c) were synthesized as per the literature protocol (Dougherty *et al.*, Tetrahedron 2000, **56**, 9781).

To a stirred solution of the amino acid methyl ester hydrochloride (1 equiv.) in dry DCM at 0 °C, in a two necked RB flask under nitrogen atmosphere was added triethylamine (2-3 equiv.). A dilute solution of sulfuryl chloride (0.45-0.5 equiv.) in dry DCM (40-80 mL) was then added drop-wise to this using an addition funnel during about 30-45 min, the mixture was allowed to warm to room temperature and stirring was continued for an additional 12 h. The reaction mixture was washed with water and 5% HCl solution, extracted with DCM, dried over Na₂SO₄ and solvents were evaporated to get a residue which was chromatographed using EtOAc-Hexanes mixture to get the compounds **2a-2d** in 20-65% yields as white crystalline solids.

N,N'-Sulfonyl bis-L-alanine dimethyl ester (2a)

L-alanine methyl ester hydrochloride (11 g, 78.8 mmol) on reaction with sulfuryl chloride (3.19 mL, 39.4 mmol) in Et_3N (22 mL, 157.6 mmol) according to the general procedure given above for 12 h, gave **2a** (2.05 g, 20% yield) as white crystalline solid. Analytical data for **2a**: R_f : 0.6 (40%

EtOAc-Hexanes); mp 86-88 °C; ¹H NMR (CDCl₃) δ 5.25 (d, 1H, J = 8.4 Hz), 4.10 (dq, 1H, J = 7.6, 7.6 Hz), 3.76 (s, 3H), 1.45 (d, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃) δ 173.7, 52.7, 51.8, 19.2; IR (neat) cm⁻¹: 3270, 2962, 1739, 1453, 1349; HRMS (ESI) exact mass calcd. for C₈H₁₇N₂O₆S [M+H]⁺ 269.0807, found [M+H]⁺ 269.0810.

N,N'-Sulfonyl bis-L-valine dimethyl ester (2b)

L-Valine methyl ester hydrochloride (5 g, 29.85 mmol) on reaction with sulfuryl chloride (1.2 mL, 14.92 mmol) in Et_3N (12.5 mL, 89.55 mmol) according to the general procedure given above for 12 h, gave **2b** (3.1 g, 65% yield) as white crystalline solid. Analytical data for **2b**: R_f : 0.6 (20% EtOAc-Hexanes); mp 73-74 °C; H NMR (CDCl₃) δ 5.22

(bs, 1H), 3.89 (dd, 1H, J = 9.6, 4.4 Hz), 3.77 (s, 3H), 2.18-2.08 (m, 1H), 1.0 (d, 3H, J = 6.8 Hz), 0.89 (d, 3H, J = 6.8 Hz); ¹³C NMR (CDCl₃) δ 172.8, 61.1, 52.3, 31.4, 18.7, 17.4; $\left[\alpha\right]_{D}^{20}$ -26.32 (c = 0.1, CH₃OH); IR (neat) cm⁻¹: 3466, 3316, 2971, 1742, 1466, 1392, 1357; HRMS (ESI) exact mass calcd. for C₁₂H₂₅N₂O₆S [M+H]⁺ 325.1433, found [M+H]⁺ 325.1433.

N,N'-Sulfonyl bis-L-isoisoleucine dimethyl ester (2c)

L-Isoleucine methyl ester hydrochloride (2 g, 11 mmol) on reaction with sulfuryl chloride (0.89 mL, 4.95 mmol) in Et₃N (4.69 mL, 33 mmol) according to the general procedure given above for 12 h, gave 2c (0.9 g, 23% yield) as a white crystalline solid. Analytical data for 2c: R_f : 0.6

(30% EtOAc-Hexanes); mp 55-56 °C; ¹H NMR (CDCl₃) δ 5.08 (d, 1H, J = 9.6 Hz), 3.92 (dd, 1H, J = 4.4, 4.4 Hz), 3.75 (s, 3H), 1.89-1.83 (m, 1H), 1.44-1.35 (m, 1H), 1.22-1.11 (m, 1H), 0.96-0.70 (m, 6H); ¹³C NMR (CDCl₃) δ 172.82, 60.42, 52.35, 38.4, 24.9, 15.3, 11.6; [α]_D²⁰ -30.32 (c = 0.1, CH₃OH); IR (neat) cm⁻¹: 3312, 2966, 1733, 1456, 1361, 1300; HRMS (ESI) exact mass calcd. for C₁₄H₂₉N₂O₆S [M+H]⁺ 353.1746, found [M+H]⁺ 353.1747.

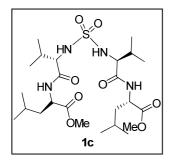
General procedure for the synthesis of sulfamido-peptides 1a-1d

At first, the diesters **2a-c** were subjected to alkaline hydrolysis (1N LiOH in 3:1 of THF and water) to get the corresponding diacids **2d-f** in quantitative yields. To a stirred solution of the diacid (1 equiv.) in dry DCM at 0 °C was added EDCI (3 equiv.), HOBt (1 equiv.), DMAP (10 mol %) and DIPEA (10 equiv.) followed by the appropriate amino acid methyl ester hydrochloride salt (10 equiv.). The mixture was allowed to stir at room temperature for 4-5 days, diluted with DCM, washed with water and 5 % HCl solution, and the residue after solvent evaporation was chromatographed with EtOAc/Hexanes to afford the desired sulfamido-peptides in moderate to good yields.

Sulfamido peptide 1a

Diacid **2e** (0.4 g, 1.35 mmol) on reaction with L-valine methyl ester hydrochloride (2.26 g, 13.5 mmol) under the standard peptide coupling protocol discussed above for 4d afforded the product **1a** (0.26 g, 35% yield). Analytical data for **1a:** R_f: 0.5 (75% EtOAc-Hexanes); 1 H NMR (CDCl₃): δ 7.06 (d, 1H, J = 8.8 Hz), 5.48 (d, 1H, J = 7.6 Hz), 4.6 (dd, 1H, J = 5.2, 5.2 Hz), 3.89 (dd, 1H, J = 6.0, 5.6 Hz),

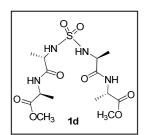
3.76 (s, 3H), 2.28-2.19 (m, 1H), 2.18-1.9 (m, 1H), 1.03 (d, 3H, J = 6.8 Hz), 0.99-0.92 (m, 9H); ¹³C NMR (CDCl₃) δ 172.9, 171.6, 63.6, 57.4, 52.3, 31.0, 30.9, 19.2, 19.1, 17.9 (2C); HRMS (ESI) exact mass calcd. for $C_{22}H_{42}N_4O_8SNa$ [M+Na]⁺ 545.2621, found [M+Na]⁺ 545.2618.


Sulfamido peptide 1b

Diacid **2f** (1.0 g, 3.086 mmol) on reaction with L-Isoleucine methyl ester hydrochloride (5.6 g, 30.86 mmol) under the standard peptide coupling protocol discussed above for 4d afforded the product **1b** (0.355 g, 19% yield) as colourless solid. Analytical data for **1b**: R_f : 0.15 (90% EtOAc-Hexanes); mp 123-124 °C; ¹H NMR (CDCl₃): δ 7.08 (d, 1H, J = 8 Hz), 5.46 (d, 1H,

J = 7.2 Hz), 4.62 (dd, 1H, J = 6.8, 6.0 Hz), 3.91 (dd, 1H, J = 6.4, 5.6 Hz), 3.74 (s, 3H), 2.0-1.92 (m, 1H), 1.9-1.8 (m, 1H), 1.6-1.52 (m, 1H), 1.49-1.4 (m, 1H), 1.27-1.2 (m, 2H), 1.0-0.85 (m, 12H); ¹³C NMR (CDCl₃): δ 172.9, 171.4, 62.9, 56.7, 52.2, 37.7, 37.5, 25.3, 25.2, 24.9, 15.6,

15.5, 11.4; $[\alpha]_D^{20}$ -62.56 (c = 0.13, CH₃OH); IR (neat) cm⁻¹: 3299, 3259, 2957, 2880, 1746, 1731, 1652, 1553; ESI m/z: calcd. for $C_{26}H_{50}N_4O_8SNa$ [M+Na]⁺ 601.3276, found [M+Na]⁺ 601.3247.


Sulfamido peptide 1c

Diacid **2e** (0.4 g, 1.351 mmol) on reaction with L-Leucine methyl ester hydrochloride (2.45 g, 13.5 mmol) under the standard peptide coupling protocol discussed above for 4d afforded the product **1c** (0.32 g, 43% yield). Analytical data for **1c:** R_f: 0.4 (90% EtOAc-Hexanes); mp 163-164 °C; ¹H NMR (CDCl₃): δ 7.45 (d, 1H, J = 6.4 Hz), 5.72 (d, 1H, J = 5.6 Hz), 4.66-4.62 (m, 1H), 3.89 (dd, (1H, J = 6.4 Hz)

5.6, 4.8 Hz), 3.73 (s, 3H), 2.1-2.04 (m, 1H), 1.78-1.63 (m, 3H), 1.02 (d, 3H, J = 5.2 Hz), 0.98-0.93 (m, 9H); ¹³C NMR (CDCl₃): δ 174.1, 171.8, 64.3, 52.4, 50.9, 40.5, 31.0, 24.9, 22.9, 21.4, 19.2, 18.1; $\left[\alpha\right]_D^{20}$ -43.76 (c = 0.1, CH₃OH); IR (neat) cm⁻¹: 3284, 3261, 3079, 2875, 1751, 1730, 1647, 1558, 1462; ESI m/z: calcd. for C₂₄H₄₇N₄O₈S [M+H]⁺ 551.3115 found [M+H]⁺ 551.3132.

Sulfamido peptide 1d

Diacid **2d** (0.32 g, 1.3 mmol) on reaction with L-alanine methyl ester hydrochloride (1.85 g, 13 mmol) under the standard peptide coupling protocol discussed above for 4 d to afforded the product **1d** (0.11 g, 20% yield). Analytical data for **1d**: R_f : 0.4 (75% EtOAc-Hexanes); mp 152-153 °C; ¹H NMR (CDCl₃): δ 7.45 (d, 1H, J = 5.6 Hz), 6.7 (d, 1H, J = 6.8

Hz), 4.57 (m, 2H), 3.76 (s, 3H), 1.49 (d, 3H, J = 6.8 Hz), 1.44 (d, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃): δ 172.9, 170.2, 52.6, 49.1, 48.3, 18.6, 18.1; $\left[\alpha\right]_{D}^{20}$ -154.96 (c = 0.1, CH₃OH); IR (neat) cm⁻¹: 3315, 3292, 3263, 3241, 2958, 1746, 1660, 1552, 1454, 1346; ESI m/z: calcd. for $C_{14}H_{27}N_4O_8S\left[M+H\right]^+411.1564$, found $\left[M+H\right]^+411.1550$.

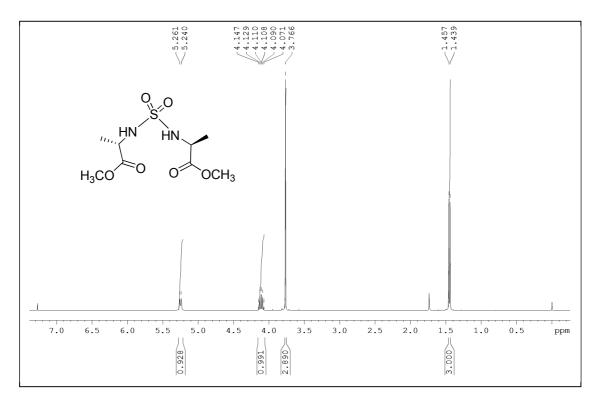


Figure 3. ¹H NMR (400 MHz) spectrum of compound 2a

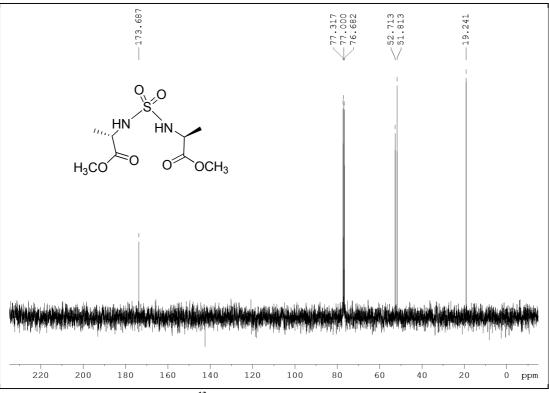


Figure 4. ¹³C NMR (100 MHz) spectrum of compound 2a

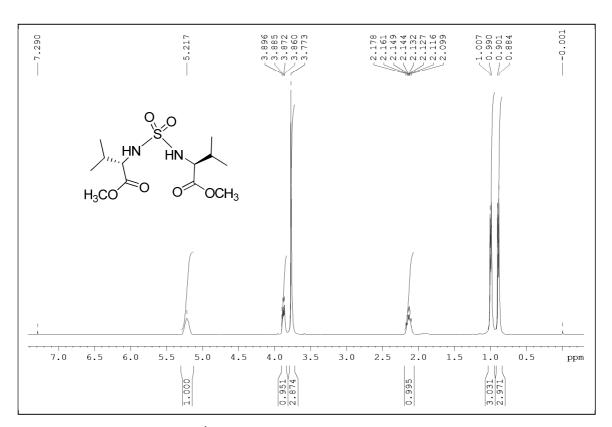


Figure 5. ¹H NMR (400 MHz) spectrum of compound 2b

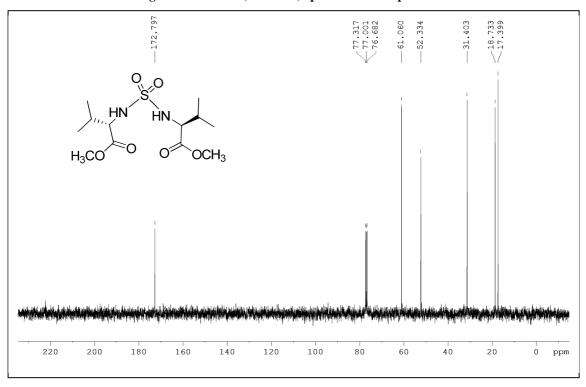


Figure 6. $^{13}\mathrm{C}$ NMR (100 MHz) spectrum of compound 2b

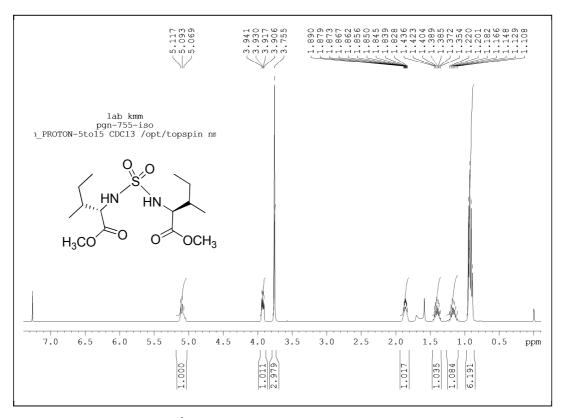


Figure 7. ¹H NMR (400 MHz) spectrum of compound 2c

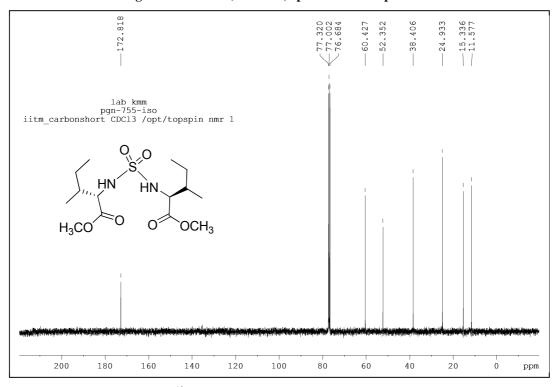


Figure 8. ¹³C NMR (100 MHz) spectrum of compound 2c

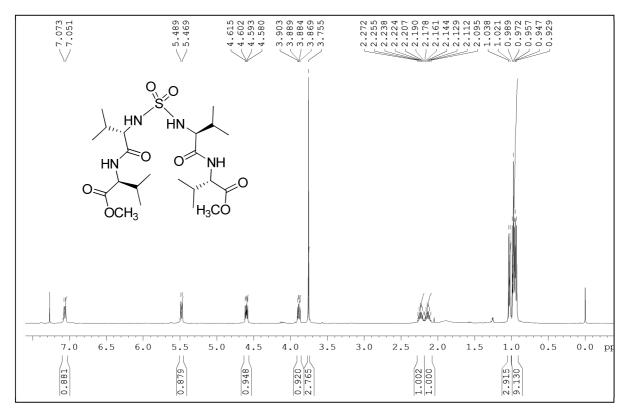


Figure 9. ¹H NMR (400 MHz) spectrum of compound 1a

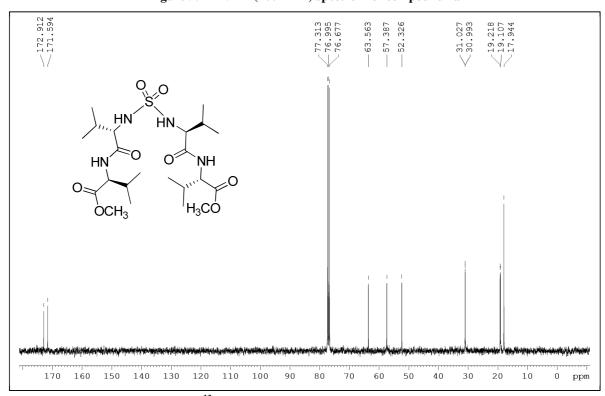


Figure 10. ¹³C NMR (100 MHz) spectrum of compound 1a

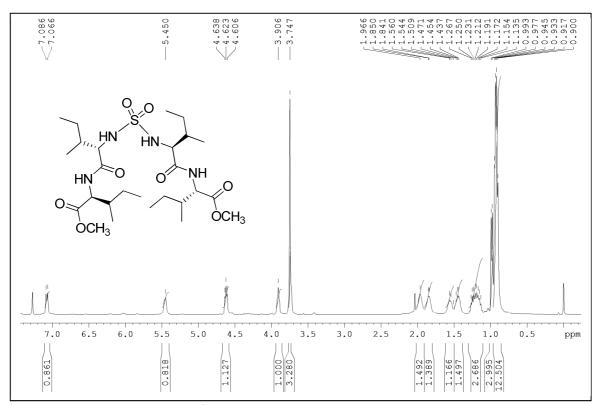


Figure 11. ¹H NMR (400 MHz) spectrum of compound 1b

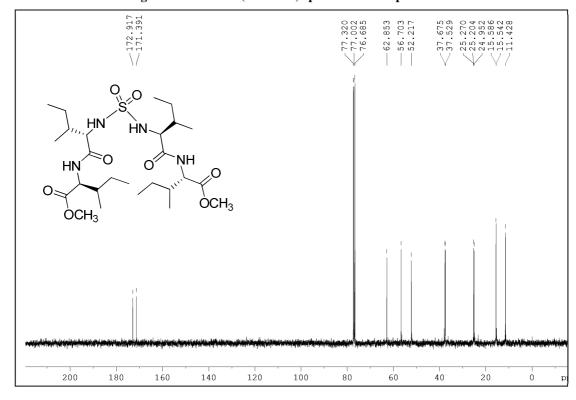


Figure 12. $^{13}\mathrm{C}$ NMR (100 MHz) spectrum of compound 1b

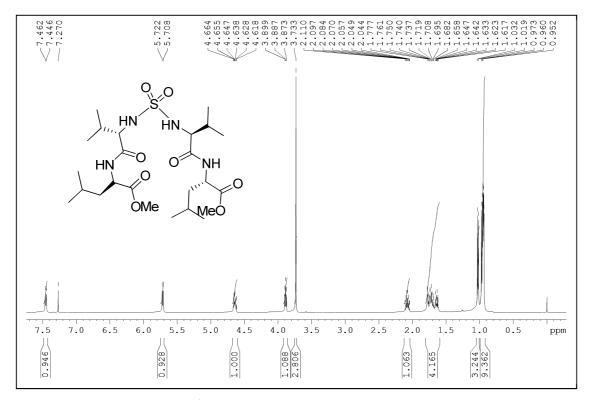


Figure 13. ¹H NMR (400 MHz) spectrum of compound 1c

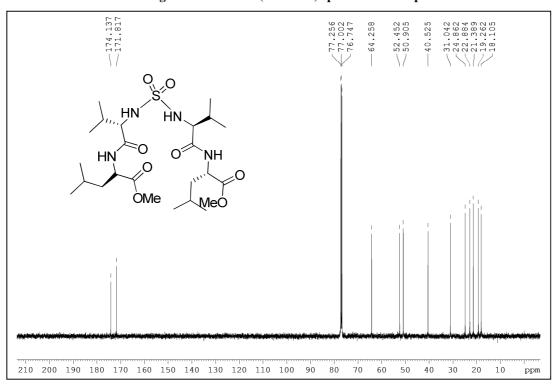


Figure 14. ¹³C NMR (100 MHz) spectrum of compound 1c

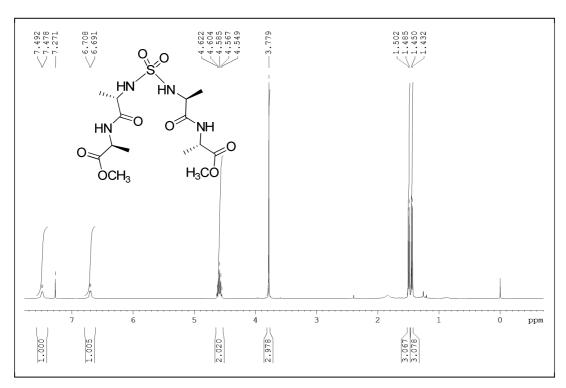


Figure 15. 1 H NMR (400 MHz) spectrum of compound 1d

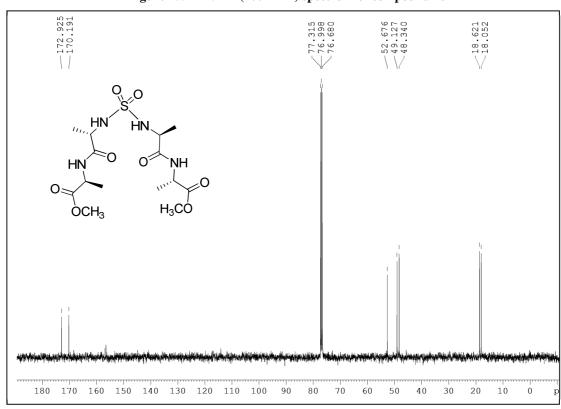


Figure 16. $^{13}\mathrm{C}$ NMR (100 MHz) spectrum of compound 1d