## **Supporting information**

## Structural analyses of a K<sub>2</sub>O-rich KNbO<sub>3</sub> melt and the mechanism of KNbO<sub>3</sub> crystal growth

Songming Wan, Bo Zhang, Yulong Sun, Xiaolu Tang, and Jinglin You

| No. | Mode  | Frequency (cm <sup>-1</sup> ) |
|-----|-------|-------------------------------|
| 1   | $B_2$ | 71.1                          |
| 2   | $B_1$ | 183.2                         |
| 3   | $A_1$ | 184.7                         |
| 4   | $B_2$ | 189.1                         |
| 5   | $A_1$ | 225.6                         |
| 6   | $B_1$ | 234.2                         |
| 7   | $B_1$ | 253.5                         |
| 8   | $A_1$ | 269.9                         |
| 9   | $A_2$ | 281.5                         |
| 10  | $B_2$ | 507.4                         |
| 11  | $B_1$ | 539.8                         |
| 12  | $A_1$ | 589.0                         |

Table S1 Calculated optical modes of the orthorhombic KNbO<sub>3</sub> crystal and their frequencies.

The orthorhombic KNbO<sub>3</sub> crystal belongs to the space group *A*mm2 with two formula units in the unit cell and one formula unit (5 atoms) in the primitive cell. The irreducible representation for its normal vibrational modes, analyzed by group theory, has been reported by A. M. Quittet *et al* (*Phys. Rev. B*, 1976, **14** 5068-5072.) and Z. X. Shen *et al* (*Phys. Rev. B*, 1995, **52**, 3976-3980.). At q = 0,  $\Gamma = 5A_1 + A_2 + 5B_1 + 4B_2$ . With exception of the acoustic modes  $A_1 + B_1 + B_2$ , the remainders  $(4A_1 + A_2 + 4B_1 + 3B_2)$  are optical modes. All the optical modes are Raman-active.

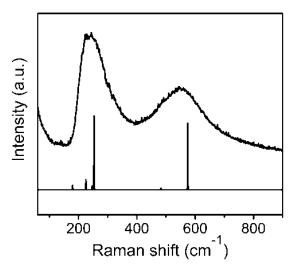



Fig. S1 Experimental (top) and calculated (bottom) Raman spectra of the tetragonal KNbO3 crystal.

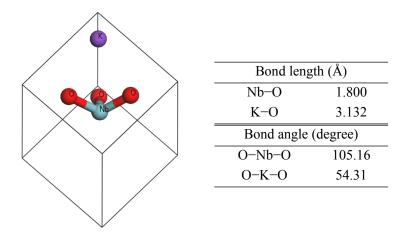
| No.   | Mode  | Frequency (cm <sup>-1</sup> ) |
|-------|-------|-------------------------------|
| <br>1 | Ε     | -132.5                        |
| 2     | $A_1$ | 179.2                         |
| 3     | E     | 180.3                         |
| 4     | $B_2$ | 225.2                         |
| 5     | E     | 246.6                         |
| 6     | $A_1$ | 253.2                         |
| 7     | E     | 482.6                         |
| <br>8 | $A_1$ | 574.4                         |
|       |       |                               |

Table S2 Calculated optical modes of the tetragonal KNbO<sub>3</sub> crystal and their frequencies.

The tetragonal KNbO<sub>3</sub> crystal belongs to the space group *P*4*mm* with one formula unit (5 atoms) in the unit cell. The irreducible representation for its normal vibrational modes, analyzed by group theory, is  $4A_1 + 5E + B_2$  at q = 0 ( $\Gamma$  point). With exception of the acoustic modes  $A_1 + E$ , the remainders  $(3A_1 + 4E + B_2)$  are optical modes. All the optical modes are Raman-active.

The cubic KNbO<sub>3</sub> crystal belongs to the space group Pm3m with one formula unit (5 atoms) in the unit cell. The irreducible representation for its normal vibrational modes, analyzed by group theory, is  $4F_{1u} + F_{2u}$  at q = 0 ( $\Gamma$  point). With exception of the acoustic modes  $F_{1u}$ , the remainders  $(3F_{1u} + F_{2u})$  are optical modes. None of them are Raman-active. However, the cubic KNbO<sub>3</sub> crystal has two broad and intensive Raman bands in the experimental Raman spectra. The phenomenon can be explained on the basis of an order-disorder model of the central Nb ion (J. A. Baier-Saip, et al. *Solid State Commun.*, 2005, 135, 367–372.).

| $\bigwedge$ | Bond length (Å)     |        |
|-------------|---------------------|--------|
|             | Nb-O(1)             | 1.988  |
|             | Nb-O(2)             | 1.799  |
|             | K-O(1)              | 3.096  |
|             | Bond angle (degree) |        |
|             | O(1)-Nb-O(1)        | 123.50 |
|             | O(2)-Nb-O(2)        | 102.23 |
|             | O(1)-Nb-O(2)        | 107.29 |
|             | O(1)-K-O(1)         | 68.90  |


**Fig. S2** Optimized structure of the K[NbO<sub>2</sub> $\emptyset_2$ ] group. Crystal system: monoclinic; Space group: *P*1*m*1 (no. 6); Unit cell dimensions: a = c = 5.1723 Å; b = 3.5032 Å;  $\beta = 93.33^{\circ}$ .

The optimized Nb–O bond lengths and O–Nb–O angles coincide with the reported values. (**Ref. 1:** F. D. Hardcastle and I. E. Wachs, *Solid State Ionics*, 1991, **45**, 201–213; **Ref. 2:** V. K. Trunov, V. A. Efremov, Yu. A. Velikodnyi and I. M. Averina, *Kristallografiya*, 1981, **26**, 67–71; **Ref. 3:** W. I. F. David, *Mater. Res. Bull.* 1983, **18**, 749–756.)

| No. | Mode               | Frequency (cm <sup>-1</sup> ) |
|-----|--------------------|-------------------------------|
| 1   |                    | -48.6                         |
| 2   | A'                 | 129.0                         |
| 3   | $A^{\prime\prime}$ | 167.5                         |
| 4   | A'                 | 168.2                         |
| 5   | A'                 | 198.4                         |
| 6   | $A^{\prime\prime}$ | 227.6                         |
| 7   | A'                 | 303.7                         |
| 8   | A'                 | 338.9                         |
| 9   | A'                 | 486.1                         |
| 10  | $A^{\prime\prime}$ | 529.7                         |
| 11  | A'                 | 770.7                         |
| 12  | A'                 | 842.3                         |
|     |                    |                               |

**Table S3** Calculated optical modes of the K[NbO<sub>2</sub> $Ø_2$ ] group and their frequencies.

The melt unit cell belongs to the monoclinic space group P1m1; each unit cell contains 5 atoms. Therefore, the melt has 15 vibrational modes (5*A*" + 10*A'*). With exception of the three acoustic modes *A*" + 2*A'*, the rest modes (4*A*" + 8*A'*) are optical modes and all Raman-active.



**Fig. S3** Optimized structure of the K[NbO<sub>3</sub>] group. Crystal system: trigonal; Space group: R3m (no. 160); Unit cell dimensions: a = c = 5.3194 Å.

The Nb–O bond lengths and O–Nb–O angles are close to the reported values. (**Ref. 1:** A. W. Hewat, *J. Phys. C*, 1973, **6**, 2559–2572; **Ref. 2:** P. Seidel and W. Hoffmann, Z. fuer Kristallogr. Kristallgeom. Kristallphys. Kristallchem., 1976, **143**, 444–459.)

| No. | Mode  | Frequency (cm <sup>-1</sup> ) |
|-----|-------|-------------------------------|
| 1   | $A_2$ | 43.0                          |
| 2   | E     | 101.0                         |
| 3   | E     | 101.0                         |
| 4   | $A_1$ | 116.6                         |
| 5   | E     | 164.2                         |
| 6   | E     | 164.2                         |
| 7   | $A_1$ | 291.9                         |
| 8   | E     | 310.9                         |
| 9   | E     | 310.9                         |
| 10  | E     | 782.7                         |
| 11  | E     | 782.7                         |
| 12  | $A_1$ | 889.5                         |

Table S4 Calculated optical modes of the K[NbO<sub>3</sub>] group and their frequencies.

The melt unit cell belongs to the monoclinic space group R3m, containing 5 atoms. Therefore, the melt has 15 vibrational modes  $(4A_1 + A_2 + 5E)$ . With exception of the three acoustic modes  $A_1 + E$ , the rest modes  $(3A_1 + A_2 + 4E)$  are optical modes, among which  $3A_1 + 4E$  are Raman-active.