## **Supporting Information**

## A Series of Variable Coordination Polymers Based on Flexible Aromatic Carboxylates

## Jian Yang,<sup>a</sup> Gui-Dan Xie,<sup>a</sup> Xue-Fei Chen,<sup>a</sup> Duo Wu,<sup>a</sup> Xiao-Ming Lin,<sup>\*a, b</sup> Gang Zhang,<sup>b</sup> and Yue-Peng Cai<sup>\*a</sup>

<sup>a</sup>School of Chemistry and Environment, South China Normal University; Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou 510006, P.R. China. <sup>b</sup>State Key Laboratory of Supramolecular Structure and Material, Jilin University, Changchun ,130012, P.R. China.

## Contents

- Table S1. Selected Bond Distances (Å) and Angles (°) for complexes 1-6
- **Figure S1**. 3-D supramolecular network in *ab* plane assembled by hydrogen bonding O-H…O interactions between two adjacent chains in complex **4**.
- Figure S2. The coordination environment of Cu<sup>2+</sup> ion in complex 2. All the H atoms are omitted for clarity.
- **Figure S3**. The inorganic zigzag chains –Cu–O–Cu–O– and the 3D framework structure for complex **2**.

Figure S4. View of the 3D pcu topology in compound 2.

Figure S5. The powder X-ray diffraction (PXRD) pattern of 1-6.

| Compound 1   |          |                     |            |  |
|--------------|----------|---------------------|------------|--|
| Ag(1)-N(3)#1 | 2.223(3) | N(3)#1-Ag(1)-N(2)   | 132.62(11) |  |
| Ag(1)-N(2)   | 2.316(3) | N(3)#1-Ag(1)-O(2)#2 | 125.36(11) |  |
| Ag(1)-O(2)#2 | 2.373(3) | N(2)-Ag(1)-O(2)#2   | 90.19(11)  |  |
| Ag(1)-O(1)#3 | 2.440(3) | N(3)#1-Ag(1)-O(1)#3 | 107.99(10) |  |
| N(3)-Ag(1)#4 | 2.223(3) | N(2)-Ag(1)-O(1)#3   | 91.89(10)  |  |
| O(1)-Ag(1)#5 | 2.440(3) | O(2)#2-Ag(1)-O(1)#3 | 101.08(9)  |  |
| O(2)-Ag(1)#6 | 2.373(3) |                     |            |  |

Table S1. Selected Bond Distances (Å) and Angles (°) for complexes 1-6

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z; #2 x,-y+3/2,z-1/2; #3 -x+1,y-1/2,-z+1/2; #4 x-1,y,z #5 -x+1,y+1/2,-z+1/2; #6 x,-y+3/2,z+1/2

| Compound 2     |          |                     |            |
|----------------|----------|---------------------|------------|
| Cu(1)-N(1)#1   | 1.997(3) | N(1)-Cu(1)-N(1)#1   | 180.00(3)  |
| Cu(1)-N(1)     | 1.997(3) | O(1)#2-Cu(1)-N(1)#1 | 88.28(10)  |
| Cu(1)-O(1)#2   | 1.970(2) | O(1)#3-Cu(1)-N(1)#1 | 91.72(10)  |
| Cu(1)-O(1)#3   | 1.970(2) | O(1)#3-Cu(1)-N(1)   | 88.28(10)  |
| O(1) - Cu(1)#4 | 1.970(2) | O(1)#2-Cu(1)-N(1)   | 91.72(10)  |
|                |          | O(1)#2-Cu(1)-O(1)#3 | 180.00(19) |

Symmetry transformations used to generate equivalent atoms: #1 -X,-Y,-Z; 2# -1/2+X,-1/2-Y,-1/2+Z; 3# 1/2-X, 1/2+Y, 1/2-Z; 4# 1/2-X,-1/2+Y,1/2-Z

|                     | Compo      | ound 3              |            |
|---------------------|------------|---------------------|------------|
| Eu(1)-O(1)          | 2.330(4)   | O(2)#3-Eu(1)-O(5)#1 | 75.40(13)  |
| Eu(1)-O(1)#1        | 2.330(4)   | O(1)-Eu(1)-O(5)     | 75.81(14)  |
| Eu(1)-O(2)#2        | 2.368(4)   | O(1)#1-Eu(1)-O(5)   | 127.42(14) |
| Eu(1)-O(2)#3        | 2.368(4)   | O(2)#2-Eu(1)-O(5)   | 75.40(13)  |
| Eu(1)-O(5)#1        | 2.468(4)   | O(2)#3-Eu(1)-O(5)   | 80.10(13)  |
| Eu(1)-O(5)          | 2.468(4)   | O(5)#1-Eu(1)-O(5)   | 53.03(19)  |
| Eu(1)-N(3)#4        | 2.610(5)   | O(1)-Eu(1)-N(3)#4   | 86.16(14)  |
| Eu(1)-N(3)#5        | 2.610(5)   | O(1)#1-Eu(1)-N(3)#4 | 74.56(14)  |
| O(2)-Eu(1)#3        | 2.369(4)   | O(2)#2-Eu(1)-N(3)#4 | 136.12(14) |
| N(3)-Eu(1)#5        | 2.610(5)   | O(2)#3-Eu(1)-N(3)#4 | 70.67(14)  |
| O(1)-Eu(1)-O(1)#1   | 156.63(19) | O(5)#1-Eu(1)-N(3)#4 | 129.55(14) |
| O(1)-Eu(1)-O(2)#2   | 99.89(13)  | O(5)-Eu(1)-N(3)#4   | 146.69(14) |
| O(1)#1-Eu(1)-O(2)#2 | 85.66(13)  | O(1)-Eu(1)-N(3)#5   | 74.56(14)  |
| O(1)-Eu(1)-O(2)#3   | 85.66(13)  | O(1)#1-Eu(1)-N(3)#5 | 86.16(14)  |
| O(1)#1-Eu(1)-O(2)#3 | 99.89(13)  | O(2)#2-Eu(1)-N(3)#5 | 70.67(14)  |
| O(2)#2-Eu(1)-O(2)#3 | 152.6(2)   | O(2)#3-Eu(1)-N(3)#5 | 136.12(14) |
| O(1)-Eu(1)-O(5)#1   | 127.42(14) | O(5)#1-Eu(1)-N(3)#5 | 146.69(14) |
| O(1)#1-Eu(1)-O(5)#1 | 75.81(14)  | O(5)-Eu(1)-N(3)#5   | 129.55(14) |
| O(2)#2-Eu(1)-O(5)#1 | 80.10(13)  | N(3)#4-Eu(1)-N(3)#5 | 69.28(19)  |

Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z-1/2; #2 x,-y,z-1/2; #3 -x,-y,-z; #4 x-1/2,-y-1/2,z-1/2; #5 -x+1/2,-y-1/2,-z

| Compound 4  |          |                  |            |  |
|-------------|----------|------------------|------------|--|
| Ag(1)-N(12) | 2.180(3) | N(12)-Ag(1)-N(1) | 150.36(12) |  |
| Ag(1)-N(1)  | 2.181(3) | O(2)-Ag(1)-N(1)  | 91.60(13)  |  |
| Ag(1)-O(2)  | 2.659(2) | N(12)-Ag(1)-O(2) | 113.60(14) |  |

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z; #2 x,-y+3/2,z-1/2; #3 -x+1,y-1/2,-z+1/2

| Compound 5   |            |                     |            |  |
|--------------|------------|---------------------|------------|--|
| Cu(1)-O(1)#1 | 1.9710(14) | O(1)#1-Cu(1)-O(1)#2 | 180.0      |  |
| Cu(1)-O(1)#2 | 1.9710(14) | O(1)#1-Cu(1)-N(1)   | 91.44(6)   |  |
| Cu(1)-N(1)   | 1.9769(17) | O(1)#2-Cu(1)-N(1)   | 88.56(6)   |  |
| Cu(1)-N(1)#3 | 1.9770(17) | O(1)#1-Cu(1)-N(1)#3 | 88.56(6)   |  |
| O(1)-Cu(1)#4 | 1.9710(14) | O(1)#2-Cu(1)-N(1)#3 | 91.44(6)   |  |
|              |            | N(1)-Cu(1)-N(1)#3   | 180.00(11) |  |

Symmetry transformations used to generate equivalent atoms: #1 x-1/2,-y+3/2,z+1/2; #2 -x+1/2,y+1/2,-z+3/2; #3 -x,-y+2,-z+2 #4 -x+1/2,y-1/2,-z+3/2

| Compound (          |            |                     |            |
|---------------------|------------|---------------------|------------|
|                     | Compound   | 0                   |            |
| N(4)-Eu(2)          | 2.604(5)   | O(5)-Eu(2)-O(2)#4   | 79.82(18)  |
| O(1)-Eu(2)          | 2.434(5)   | O(3)#5-Eu(2)-O(2)#4 | 92.75(16)  |
| O(2)-Eu(2)#1        | 2.413(5)   | O(4)#3-Eu(2)-O(1)   | 87.60(18)  |
| O(2)-Eu(2)          | 2.644(5)   | O(6)#1-Eu(2)-O(1)   | 131.22(17) |
| O(3)-Eu(2)#2        | 2.378(4)   | O(5)-Eu(2)-O(1)     | 74.6(2)    |
| O(4)-Eu(2)#3        | 2.349(5)   | O(3)#5-Eu(2)-O(1)   | 86.24(17)  |
| O(5)-Eu(2)          | 2.351(5)   | O(2)#4-Eu(2)-O(1)   | 153.55(17) |
| O(6)-Eu(2)#4        | 2.348(4)   | O(4)#3-Eu(2)-N(4)   | 71.51(18)  |
| Eu(2)-O(4)#3        | 2.348(5)   | O(6)#1-Eu(2)-N(4)   | 131.20(17) |
| Eu(2)-O(6)#1        | 2.348(4)   | O(5)-Eu(2)-N(4)     | 70.91(18)  |
| Eu(2)-O(3)#5        | 2.378(4)   | O(3)#5-Eu(2)-N(4)   | 143.38(19) |
| Eu(2)-O(2)#4        | 2.413(5)   | O(2)#4-Eu(2)-N(4)   | 75.33(17)  |
| O(4)#3-Eu(2)-O(6)#1 | 83.60(17)  | O(1)-Eu(2)-N(4)     | 89.84(17)  |
| O(4)#3-Eu(2)-O(5)   | 138.17(17) | O(4)#3-Eu(2)-O(2)   | 78.72(15)  |
| O(6)#1-Eu(2)-O(5)   | 136.20(19) | O(6)#1-Eu(2)-O(2)   | 80.05(16)  |
| O(4)#3-Eu(2)-O(3)#5 | 144.42(18) | O(5)-Eu(2)-O(2)     | 114.59(16) |
| O(6)#1-Eu(2)-O(3)#5 | 74.53(18)  | O(3)#5-Eu(2)-O(2)   | 70.20(15)  |
| O(5)-Eu(2)-O(3)#5   | 72.95(18)  | O(2)#4-Eu(2)-O(2)   | 151.46(3)  |
| O(4)#3-Eu(2)-O(2)#4 | 107.58(17) | O(1)-Eu(2)-O(2)     | 51.18(15)  |
| O(6)#1-Eu(2)-O(2)#4 | 73.25(17)  | N(4)-Eu(2)-O(2)     | 131.74(16) |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y-1/2,-z+3/2; #2 x,-y+1/2,z+1/2; #3 -x+1,-y,-z+2;

#4 -x+1,y+1/2,-z+3/2; #5 x,-y+1/2,z-1/2



**Figure S1**. 3-D supramolecular network in *ab* plane assembled by hydrogen bonding O-H…O interactions between two adjacent chains in complex **4**.



Figure S2. The coordination environment of  $Cu^{2+}$  ion in complex 2. All the H atoms are omitted for clarity



**Figure S3**. The inorganic zigzag chains –Cu–O–Cu–O– and the 3D framework structure for complex **2**.



Figure S4. View of the 3D pcu topology in compound 2.

**Figure S5**. The powder X-ray diffraction (PXRD) pattern of **1-6** (Red: Experimental; Black: Simulated).

(a) for compound 1



compound 2



(c) for compound **3** 



(d) for compound 4



(e) for compound 5



(f) for compound 6

