Electronic Supplementary Information

Reaction Controlled Assemblies and Structural Diversities of Seven Co(II)/Cu(II) Complexes Based on a Bipyridine-dicarboxylate N-oxide Ligand

Quan-Quan Li, Yi-Fan Kang, Chun-Yan Ren, Guo-Ping Yang, Qing Liu, Ping Liu \ast and Yao-Yu Wang

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China E-mail: <u>liuping@nwu.edu.cn</u>

complex	1	2	3	4	5
chemical formula	$C_{14}H_{11}CoN_3O_8$	$C_{12}H_8CuN_2O_7$	$C_{48}H_{28}Cu_2N_8O_{12}\\$	$C_{48}H_{48}Cu_2N_8O_{22}\\$	$C_{44}H_{40}Cu_2N_8O_{18}\\$
formula weight	408.17	355.74	1035.86	1216.02	1095.92
crystal shape	columnar	block	columnar	block	block
crystal color	red	bright green	blue	blue	blue
temperature (K)	296(2)	296(2)	296(2)	296(2)	296(2)
crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic	Triclinic
space group	C2/m	P2(1)/n	P2(1)/n	<i>P</i> -1	<i>P</i> -1
$a/ m \AA$	14.462(2)	5.8488(13)	9.3276(10)	9.213(2)	9.357(4)
$b/{ m \AA}$	15.486(3)	16.227(4)	11.9664(13)	12.190(3)	11.325(5)
$c/ m \AA$	7.4899(12)	13.164(3)	19.099(2)	12.635(3)	12.540(5)
α (°)	90	90	90	109.362(4)	64.338(6)
β (°)	96.971(3)	91.507(3)	92.947(2)	109.077(4)	69.757(6)
γ (°)	90	90	90	91.212(4)	75.003(6)
$V/\text{\AA}^3$	1665.0(5)	1249.0(5)	2128.9(4)	1251.8(5)	1114.4(8)
Ζ	4	4	2	1	1
density (mg/m ³)	1.620	1.892	1.616	1.613	1.633
$\mu (\mathrm{mm}^{-1})$	1.080	1.790	1.078	0.944	1.044
<i>F</i> (000)	820	716.0	1052	626	562
reflections collected	4251	6642	10555	6190	5612
<i>R</i> _{int}	0.0504	0.0335	0.0463	0.0212	0.0247
number of parameters	129	199	316	361	325
Goodness-of-fit on F^2	1.075	1.075	1.002	1.052	1.028
$R_1^{a}, w R_2^{b} [I > 2\sigma(I)]$	0.0642, 0.1755	0.0408, 0.1228	0.0410, 0.0877	0.0450, 0.1330	0.0559, 0.1634
R_1 , wR_2 (all data)	0.0897, 0.1940	0.0656, 0.1756	0.0659, 0.0978	0.0538, 0.1567	0.0741, 0.2373

 Table S1 Crystallographic data and structure refinement parameters for complexes 1-5

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|) / \Sigma |F_{o}|; {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

		1	
Co(1)-O(2)#1	2.080(4)	Co(1)-O(2)#2	2.080(4)
Co(1)-O(2)#3	2.080(4)	Co(1)-O(2)	2.080(4)
Co(1)-O(4)	2.138(5)	Co(1)-O(4)#1	2.138(5)
Co(2)-O(3)	2.075(4)	Co(2)-O(3)#4	2.075(4)
Co(2)-O(3)#5	2.075(4)	Co(2)-O(3)#6	2.075(4)
Co(2)-N(1)	2.115(8)	Co(2)-N(1)#4	2.115(8)
O(2)#1-Co(1)-O(2)#2	90.6(3)	O(2)#1-Co(1)-O(2)#3	89.4(3)
O(2)#2-Co(1)-O(2)#3	180	O(2)#1-Co(1)-O(2)	180
O(2)#2-Co(1)-O(2)	89.4(3)	O(2)#3-Co(1)-O(2)	90.6(3)
O(2)#1-Co(1)-O(4)	92.48(2)	O(2)#2-Co(1)-O(4)	87.52(2)
O(2)#3-Co(1)-O(4)	92.48(2)	O(2)-Co(1)-O(4)	87.52(2)
O(2)#1-Co(1)-O(4)#1	87.52(2)	O(2)#2-Co(1)-O(4)#1	92.48(2)
O(2)#3-Co(1)-O(4)#1	87.52(2)	O(2)-Co(1)-O(4)#1	92.48(2)
O(4)-Co(1)-O(4)#1	180	O(3)-Co(2)-O(3)#4	180
O(3)-Co(2)-O(3)#5	93.6(2)	O(3)#4-Co(2)-O(3)#5	86.4(2)
O(3)-Co(2)-O(3)#6	86.4(2)	O(3)#4-Co(2)-O(3)#6	93.6(2)
O(3)#5-Co(2)-O(3)#6	180	O(3)-Co(2)-N(1)	95.31(2)
O(3)#4-Co(2)-N(1)	84.69(2)	O(3)#5-Co(2)-N(1)	95.31(2)
O(3)#6-Co(2)-N(1)	84.69(2)	O(3)-Co(2)-N(1)#4	84.69(2)
O(3)#4-Co(2)-N(1)#4	95.31(2)	O(3)#5-Co(2)-N(1)#4	84.69(2)
O(3)#6-Co(2)-N(1)#4	95.31(2)	N(1)-Co(2)-N(1)#4	180
		2	
Cu(1)-O(3)#1	1.929(4)	Cu(1)-O(6)#2	1.973(3)
Cu(1)-O(5)#2	1.974(3)	Cu(1)-O(1)	1.977(3)
Cu(1)-O(7)	2.363(5)		
O(3)#1-Cu(1)-O(6)#2	90.86(2)	O(3)#1-Cu(1)-O(5)#2	158.55(2)
O(6)#2-Cu(1)-O(5)#2	90.57(2)	O(3)#1-Cu(1)-O(1)	88.75(2)
O(6)#2-Cu(1)-O(1)	177.36(2)	O(5)#2-Cu(1)-O(1)	90.75(2)
O(3)#1-Cu(1)-O(7)	108.09(2)	O(6)#2-Cu(1)-O(7)	87.17(2)
O(5)#2-Cu(1)-O(7)	93.36(2)	O(1)-Cu(1)-O(7)	90.47(2)
		3	
Cu(1)-O(1)	1.933(2)	Cu(1)-O(2)	2.645(3)
Cu(1)-O(3)#1	1.954(2)	Cu(1)-O(4)#1	2.585(2)
Cu(1)-N(3)	2.000(3)	Cu(1)-N(4)	2.005(3)
O(1)-Cu(1)-O(3)#1	91.72(9)	O(1)-Cu(1)-N(3)	172.85(1)
O(3)#1-Cu(1)-N(3)	93.88(1)	O(1)-Cu(1)-N(4)	93.61(1)

Table S2 The selected bond lengths (Å) and angles (°) for complexes 1-5.

O(3)#1-Cu(1)-N(4)	167.25(1)	N(3)-Cu(1)-N(4)	81.83(1)
		4	
Cu(1)-O(1)	1.929(3)	Cu(1)-O(2)	2.856(3)
Cu(1)-O(4)#1	1.961(2)	Cu(1)-N(4)	2.005(3)
Cu(1)-N(3)	2.027(3)	Cu(1)-O(1W)	2.439(3)
O(1)-Cu(1)-O(4)#1	91.21(1)	O(1)-Cu(1)-N(4)	175.37(1)
O(4)#1-Cu(1)-N(4)	92.71(1)	O(1)-Cu(1)-N(3)	94.60(1)
O(4)#1-Cu(1)-N(3)	165.02(1)	N(4)-Cu(1)-N(3)	82.20(1)
O(1)-Cu(1)-O(1W)	90.19(1)	O(4)#1-Cu(1)-O(1W)	94.16(1)
N(4)-Cu(1)-O(1W)	87.06(1)	N(3)-Cu(1)-O(1W)	99.61(1)
		5	
Cu(1)-O(1)	1.945(4)	Cu(1)-O(3)#1	1.961(4)
Cu(1)-N(4)	1.997(4)	Cu(1)-N(3)	2.022(4)
Cu(1)-O(1W)	2.420(4)	Cu(1)-O(2)	2.797(6)
O(1)-Cu(1)-O(3)#1	90.94(2)	O(1)-Cu(1)-N(4)	170.91(2)
O(3)#1-Cu(1)-N(4)	93.65(2)	O(1)-Cu(1)-N(3)	94.34(2)
O(3)#1-Cu(1)-N(3)	173.58(2)	N(4)-Cu(1)-N(3)	80.63(2)
O(1)-Cu(1)-O(1W)	92.06(2)	O(3)#1-Cu(1)-O(1W)	93.31(2)
N(4)-Cu(1)-O(1W)	95.50(2)	N(3)-Cu(1)-O(1W)	90.15(2)

Symmetry codes: For **1**, #1 -*x*, -*y*+1, -*z*+1; #2 *x*, -*y*+1, *z*; #3 -*x*, *y*, -*z*+1; #4 -*x*, -*y*, -*z*; #5 *x*, -*y*, *z*; #6 -*x*, *y*, -*z*. For **2**, #1 *x*+1, *y*, *z*; #2 *x*+1/2, -*y*+1/2, *z*+1/2. For **3**, #1 -*x*+2,-*y*+1,-*z*+2; For **4**, #1 -*x*+1, -*y*, -*z*; For **5**, #1 -*x*+1,-*y*+1,-*z*+1.

D−H…A	D–H	H···A	D…A(Å)	$D-H\cdots A(^{o})$		
1						
C(4)-H(4)····O(1)#1	0.93	2.42	3.146(7)	135		
C(8)-H(8A)····O(4)#2	0.96	2.54	3.356(17)	142		
2						
O(7)-H(7A)···O(2)#1	0.86	2.39	3.160(7)	150		
O(7)−H(7B)···O(1)	0.86	2.47	3.093(6)	130		
O(7)-H(7B)···O(2)	0.86	1.90	2.704(8)	156		
3						
C(1)-H(1)····O(6)#1	0.93	2.19	2.927(4)	136		
C(2)-H(2)····O(4)#2	0.93	2.57	3.376(3)	145		
C(9)-H(9)···O(5)#3	0.93	2.25	3.095(4)	150		

Table S3 Hydrogen bond geometries in the crystal structure of 1-5.

C(18)−H(18)····O(2)#4	0.93	2.40	2.995(5)	121		
		4				
O(1W)−H(1A)····O(5)#1	0.86	1.89	2.711(6)	160		
O(1W)-H(1B)···O(3W)	0.85	2.13	2.983(6)	179		
O(2W)−H(2A)····O(2)	0.86	2.03	2.888(5)	179		
O(2W)-H(2B)···O(4W)#2	0.86	2.05	2.908(7)	178		
O(3W)-H(3A)····O(3)#3	0.86	1.94	2.801(5)	179		
O(3W)-H(3B)···O(5)#4	0.85	1.85	2.698(6)	179		
O(4W)-H(4A)····O(6)#3	0.87	1.90	2.772(6)	179		
O(4W)−H(4B)···O(3W)	0.85	2.08	2.925(6)	178		
O(5W)−H(5A)····O(3)#5	0.85	1.91	2.760(7)	180		
O(5W)-H(5B)···O(1W)#6	0.85	2.15	2.995(9)	180		
C(8)-H(8)····O(4W)#6	0.93	2.39	3.312(7)	170		
C(22)−H(22)····O(1W)#6	0.93	2.52	3.376(6)	154		
5						
O(1W)-H(1WA)····O(4)#1	0.86	2.14	2.717(7)	124		
O(1W)-H(1WB)····O(5)#2	0.86	2.18	2.828(7)	133		
O(2W)−H(2A)····O(2)	0.86	2.00	2.852(8)	178		
O(2W)−H(2B)····O(3W)	0.86	1.97	2.829(8)	179		
O(3W)-H(3A)····O(6)#3	0.85	1.97	2.818(8)	180		
O(3W)−H(3B)····O(4)	0.85	2.08	2.930(8)	180		
C(8)-H(8)····O(6)#4	0.93	2.25	3.172(8)	169		
C(19)-H(19)····O(2W)#5	0.93	2.31	3.175(7)	155		

Symmetry codes: For **1**, #1 1/2+*x*, 1/2-*y*, *z*; #2 1/2-*x*, -1/2+*y*, 1-*z*. For **2**, #1 –*x*+2, -*y*+1, -*z*+2. For **3**, #1 3/2-*x*, 1/2+*y*, 3/2-*z*; #2 -1+*x*, *y*, *z*; #3 5/2-*x*, -1/2+*y*, 3/2-*z*; #4 2-*x*, -*y*, 2-*z*; For **4**, #1 –*x*+1, -*y*, -*z*; #2 *x*, *y*, *z*-1; #3 *x*+1, *y*, *z*+1; #4 *x*, *y*, *z*+1; #5 *x*+1, *y*+1, *z*+1; #6 –*x*+1, -*y*+1, -*z*+1. For **5**, #1 –*x*+1, -*y*+1, -*z*+1; #2 *x*, *y*+1, *z*; #3 *x*-1, *y*, *z*; #4 2-*x*, 1-*y*, -*z*; #5 1-*x*, 2-*y*, -*z*.

Fig. S1 (a) A view of the 3D supramolecular network of complex **1** constructed through hydrogen bonds (C-H···O) and (b) the weak π - π stacking interactions between the adjacent 2D layers. The broken lines are on behalf of the hydrogen bonds and π ··· π interactions, and the hydrogen atoms are omitted for clarity.

Fig. S2 (a) A view of the 3D supramolecular network of complex **2** constructed through hydrogen bonds (O-H···O) and (b) C-H··· π interactions between the adjacent 2D layers. The broken lines are on behalf of the hydrogen bonds and C-H··· π interactions, and the hydrogen atoms are omitted for clarity.

Fig. S3 The π - π stacking interactions can be observed in the 2D layers of complex **3**. The broken lines are on behalf of the hydrogen bonds, and the hydrogen atoms are omitted for clarity.

Fig. S4 A view of 2D layer of complex **4** constructed by hydrogen bonds (O-H···O and C-H···O) and $\pi \cdots \pi$ staking interactions between two neighboring phen ligands with the centroids distance of 3.646 Å and 3.885 Å. The broken lines are on behalf of the hydrogen bonds and $\pi \cdots \pi$ interactions, and the hydrogen atoms are omitted for clarity.

Fig. S5 The π - π stacking interactions can be seen between the 2D layers of complex 5. The broken lines are on behalf of the π ··· π interactions, and the hydrogen atoms and (*R*, *S*)-bpdado ligands are omitted for clarity.

2-Theta degrees

Fig.S6 Comparisons of XRD patterns of the simulated pattern from the single-crystal structure determination and the as-synthesized products in complexes 1-5.

Fig.S7 IR for complexes 1-5.