Supporting information for

Highly pH-dependent synthesis of two novel three-dimensional dysprosium complexes with interesting magnetic and luminescent properties

Lina Zhang,^{*a,b*} Shuting Lu,^{*a*} Chao Zhang,^{*a*} Chenxia Du,^{**a*} and Hongwei Hou^{**a*}

^aCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China ^bCollege of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, P. R. China

*Author for correspondence: E-mail: <u>dcx@zzu.edu.cn</u>; <u>houhongw@zzu.edu.cn</u>

Compound 1			
$Dy(1) - O(1)^1$	2.396(2)	Dy(2)–O(5)	2.347(2)
Dy(1)–O(2) ¹	2.488(2)	Dy(2)–O(8)	2.320(2)
Dy(1)-O(4)	2.298(2)	$Dy(2) - O(11)^2$	2.355(2)
Dy(1)-O(7)	2.337(2)	Dy(2)–O(13) ³	2.432(2)
Dy(1)-O(10) ²	2.286(2)	$Dy(2) - O(14)^3$	2.476(2)
Dy(1)-O(17)	2.344(3)	Dy(2)–O(16)	2.314(2)
Dy(1)-O(20W)	2.449(2)	Dy(2)–O(19)	2.347(3)
Dy(1)-O(21W)	2.420(3)	Dy(2)-O(22W)	2.476(3)
O(1) ¹ –Dy(1)–O(2) ¹	53.35(8)	O(14) ³ –Dy(2)–O(22)	115.14(9)
O(1) ¹ –Dy(1)–O(20)	75.89(8)	O(5)–Dy(2)–O(13) ³	82.54(9)
O(1) ¹ –Dy(1)–O(21)	84.58(9)	O(5)-Dy(2)-O(14) ³	71.31(8)
O(4)–Dy(1)–O(1) ¹	144.98(9)	O(5)-Dy(2)-O(19)	140.13(9)
O(4)–Dy(1)–O(2) ¹	141.99(8)	O(5)–Dy(2)–O(22)	140.66(9)
O(4)–Dy(1)–O(7)	80.88(9)	O(8)–Dy(2)–O(5)	76.50(9)
O(4)–Dy(1)–O(17)	128.59(9)	O(8)–Dy(2)–O(13) ³	130.98(8)
O(4)-Dy(1)-O(20)	69.86(9)	O(8)-Dy(2)-O(14) ³	78.40(8)

Fable S1 Selected bond lengths ((Å) and angles (°) for compounds 1–2
----------------------------------	-------------------	---------------------

O(4)–Dy(1)–O(21)	77.72(9)	O(8)–Dy(2)–O(19)	80.02(9)		
	Compound 2				
Dy(1)-O(2)	2.364(3)	Dy(2)–O(1)	2.324(3)		
$Dy(1) - O(4)^1$	2.343(3)	Dy(2)–O(4) ¹	2.676(3)		
Dy(1)-O(7)	2.345(3)	Dy(2)–O(5) ¹	2.399(3)		
$Dy(1) - O(11)^2$	2.404(3)	Dy(2)–O(8)	2.334(3)		
$Dy(1) - O(16)^3$	2.454(3)	$Dy(2) - O(10)^2$	2.269(3)		
$Dy(1) - O(17)^3$	2.427(3)	Dy(2)–O(14)	2.296(3)		
Dy(1)-O(19)	2.366(3)	Dy(2)–O(20)	2.325(4)		
Dy(1)-O(21W)	2.396(3)	Dy(2)–O(22W)	2.376(3)		
O(2)-Dy(1)-O(10) ²	65.86(9)	O(1)–Dy(2)–O(4) ¹	71.51(9)		
O(2)–Dy(1)–O(11) ²	78.77(11)	O(1)–Dy(2)–O(5) ¹	83.42(11)		
O(2)–Dy(1)–O(16) ³	141.41(10)	O(1)–Dy(2)–O(8)	138.03(10)		
O(2)-Dy(1)-O(17) ³	146.37(11)	O(1)–Dy(2)–O(20)	130.43(14)		
O(2)-Dy(1)-O(19)	74.74(11)	O(1)–Dy(2)–O(22)	131.8911)		
O(2)–Dy(1)–O(21)	75.25(10)	O(5) ¹ –Dy(2)–O(4) ¹	50.61(10)		
O(4) ¹ –Dy(1)–O(2)	77.04(10)	O(8)–Dy(2)–O(4) ¹	70.0510)		
O(4) ¹ –Dy(1)–O(7)	71.00(10)	O(8)–Dy(2)–O(5) ¹	85.09(11)		
O(4) ¹ –Dy(1)–O(10) ²	73.79(10)	O(8)–Dy(2)–O(22)	75.60(11)		

Symmetry transformations used to generate equivalent atoms in complex 1: 1 -X, $^{1/2+Y}$, $^{1/2-Z}$: 2 -1+X, $^{1/2-Y}$, $^{-1/2+Z}$: 3 1-X, $^{-1/2+Y}$, $^{1/2-Z}$: and complex 2: 1 -1/2+X, $^{3/2-Y}$, +Z: 2 1/2+X, $^{1/2-Y}$, +Z: 3 1/2-X, $^{-1/2+Y}$, $^{1/2+Z}$.

Table	S2	Continuous	Shape	Measures	(CShM's)	calculated	by	SHAPE 2.1	for	1 a	and
2 .ª											

	1-Dy1	1-Dy2	2-Dy1	2-Dy2
OP-8	31.304	30.455	31.047	31.707
HPY-8	22.404	22.498	22.764	21.692
HBPY-8	15.246	15.656	14.006	15.347
CU-8	10.908	11.462	9.621	10.629
SAPR-8	2.557	1.812	2.795	3.64
TDD-8	1.48	1.851	2.081	1.955
JGBF-8	12.769	14.166	12.763	12.645
JETBPY-8	28.367	27.771	24.555	24.536
JBTPR-8	2.15	1.887	2.661	3.229
BTPR-8	1.565	1.133	1.732	2.89
JSD-8	3.65	3.881	4.641	3.87
TT-8	11.73	11.947	10.453	11.152
ETBPY-8	24.044	22.543	19.871	21.495

^a List Of Reference Shapes:

OP-8	D8h	Octagon
HPY-8	C7v	Heptagonal pyramid
HBPY-8	D6h	Hexagonal bipyramid

CU-8	Oh	Cube
SAPR-8	D4d	Square antiprism
TDD-8	D2d	Triangular dodecahedron
JGBF-8	D2d	Johnson gyrobifastigium J26
JETBPY	8 D3h	Johnson elongated triangular bipyramid J14
JBTPR-8	C2v	Biaugmented trigonal prism J50
BTPR-8	C2v	Biaugmented trigonal prism
JSD-8	D2d	Snub diphenoid J84
TT-8	Td	Triakis tetrahedron
ETBPY-8	3 D3h	Elongated trigonal bipyramid

Figure S1. Experimental and simulated PXRD patterns for 1.

Figure S2. Experimental and simulated PXRD patterns for 2.

Figure S3. The TGA curves for compound 1 and 2.

Figure S4. Plots of magnetization (*M*) vs field (*H*) for compounds 1 (a) and 2 (b) at different low temperatures. Insets: M vs H/T plots at different temperatures.