Electronic Supplementary Information for:

Bulk Crystal Growth of Hydrid Perovskite Material CH₃NH₃PbI₃

Yangyang Dang,^a Yang Liu,^a Youxuan Sun,^a Dongsheng Yuan,^a Xiaolong Liu,^a Weiqun Lu,^a Guangfeng Liu,^a Haibing Xia^a* and Xutang Tao^{ab*}

^a State Key Laboratory of Crystal Materials, Shandong University, No.27 Shanda South Road, Jinan, 250100, China.
^b Key Laboratory of Functional Crystal Materials and Device (Shandong University, Ministry of Education), No.27 South Shanda Road, Jinan, 250100, China
E-mail: txt@sdu.edu.cn; Fax: +86-531-88574135; Tel: +86-531-88364963; E-mail: hbxia@sdu.edu.cn.

Fig. S1 The photograph of white MAI.

Fig. S2 The photograph of white with yellow MAI.

Fig. S3 Calculated and experimental powder X-ray diffraction patterns for MAI.

Fig. S4 ¹H-NMR spectrum of MAI.

Fig. S5 ¹³C-NMR spectrum of MAI.

Fig.S6 The photograph of residue light yellow PbI₂.

Table S1 Selected bond length(Å) and bond angles(deg) for β -MAPbI₃¹

Table S2 Atomic coordinates and equivalent isotropic displacement parameters for $MAPbI_3$

Table S3 Anisotropic displacement parameters for MAPbI₃

Fig. S1 The photograph of white MAI.

Fig. S2 The photograph of white with yellow MAI.

Fig. S3 Calculated and experimental powder X-ray diffraction patterns for MAI.

Fig. S4 ¹H-NMR spectrum of MAI.

Fig. S5 ¹³C-NMR spectrum of MAI.

Fig.S6 The photograph of residue PbI_2 .

Pb-I(1)	3.125(8)
Pb-I(2)#1	3.1613(8)
Pb-I(2)#2	3.1613(8)
Pb-I(2)#3	3.1613(8)
Pb-I(2)#4	3.1613(8)
Pb-I(1)#5	3.196(8)
I(1)-Pb#6	3.196(8)
I(2)-Pb#7	3.1613(8)
I(2)-Pb#8	3.1613(8)
	1 20/2)
C-N	1.39(2)
1(1) ph 1(2)#1	99.04(12)
I(1) - F U - I(2) # 1	88.04(13)
I(1) - I(2) + 2	177.0(2)
I(2)#1-P0-I(2)#2	177.9(3)
I(1) Ph I(2)#3	88.04(13)
$1(1)^{-1} 0^{-1} (2) \pi^{-3}$	00.74(13)
I(2)#1-Ph-I(2)#3	89 980(5)
1(2)//1101(2)//3	07.700(0)
I(1)-Pb-I(2)#4	88.94(13)
I(2)#1-Pb-I(2)#4	89.980(5)
I(2)#3-Pb-I(2)#4	177.9(3)
I(1)-Pb-I(1)#5	180.0
I(2)#4-Pb-I(1)#5	91.06(13)

Table S1 Selected bond length(Å) and bond angles(deg) for $\beta\text{-MAPbI}_3{}^1$

Pb-I(1)-Pb#6

180.0

Pb#7-I(2)-Pb#8

163.55(6)

Symmetry transformations used to generate equivalent atoms:

#1 -y+1,x,z #2 y-1,-x,z #3 x,y-1,z #4 -x,-y+1,z #5 x,-y,z-1/2 #6 x,-y,z+1/2 #7 x+1/2,-y+1/2,z+0 #8 x,y+1,z

1011 11 013				
Atom	Х	У	Z	U(eq)(Å ²)
Pb(01)	0	0	0.1274	0.033(1)
I(002)	0	0	-0.1226(8)	0.122(2)
I(003)	0.2769(4)	0.2231(4)	0.1311(8)	0.104(2)
N(1)	0.4480(4)	0.9480(4)	0.8480(30)	0.063(15)
C(1)	0.4480(4)	0.9480(4)	0.8480(30)	0.063(15)

Table S2 Atomic coordinates and equivalent isotropic displacement parameters for MAPbI₃

"Ueq is defined as one third of the trace of the orthogonalized Uij tensor.

Table S3. Anisotropic displacement parameters for MAPbI₃

	1	1	1			
Atom	U11	U22	U33	U23	U13	U12
Pb(01)	0.032(1)	0.032(1)	0.035(10	0	0	0
I(002)	0.156(3)	0.156(3)	0.025(2)	0	0	0
I(003)	0.081(2)	0.081(2)	0.150(4)	0.055(3)	-0.055(3)	-0.053(2)
N(1)	0.070(2)	0.070(2)	0.05(2)	0.016(15)	0.016(15)	0.050(2)
C(1)	0.070(2)	0.070(2)	0.05(2)	0.016(15)	0.016(15)	0.050(2)

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

Reference

1. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem., 2013, 52, 9019.