Facile fabrication of urchin-like hollow boehmite and alumina microspheres with hierarchical structure via Triton X-100 assisted hydrothermal synthesis

Huihui Huang^a, Lei Wang^{a,*}, Yuan Cai^{a,b}, Caicheng Zhou^a, Yuewei Yuan^a, Xiaojun Zhang^a,

Hui Wan^a, Guofeng Guan^{a,*}

^a College of Chemistry and Chemical Engineering and State Key Laboratory of Materials-

Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China

^b Department of Chemical Engineering, Nanjing College of Chemical Technology, Nanjing

210048, P. R. China

*Corresponding author, telephone: +86-25-83587198

E-mail: wanglei@njtech.edu.cn, guangf@njtech.edu.cn

Supporting Information

Figure S1. XRD patterns of alumina obtained by calcination at 800 °C for 6 h of corresponding γ -AlOOH synthesized by varying C_{TX}: (a) 0.008, (b) 0.03, (c) 0.065, (d) 0.1 and (e) 0.13 M.

Figure S2. FT-IR spectra of pure Trtiton X-100(a), as-synthesized γ -AlOOH samples (b-g) synthesized at C_{TX}=0, 0.008, 0.03, 0.065, 0.10, 0.13 M; (h, k) Al₂O₃ synthesized at C_{TX}=0, 0.065 M.

Figure S3. TG curves of γ -AlOOH synthesized by varying C_{TX}.

Figure S4. SEM images of γ -AlOOH and corresponding alumina synthesized by

varying C_{TX} : (a, b) 0, (c, d) 0.008, (e, f) 0.03, (g, h) 0.1 and (j, k) 0.13 M.

Figure S5. Pore volumes of alumina change with concentrations of TX-100.