Electronic Supporting Information (ESI) for manuscript:

Coordination assemblies of Cd^{II} with 2,2':6',2''-terpyridine (*terpy*), 2,3,5,6-tetra-(2-pyridyl)pyrazine (*tppz*) and pseudohalide ions – structural diversification and luminescent properties

Iwona Nawrot^a, Barbara Machura^{a*} and Rafał Kruszynski^b

^a Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland, E-mail: <u>basia@ich.us.edu.pl</u>

^c Department of X-ray Crystallography and Crystal Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, 116 Żeromski St., 90-924 Łódź, Poland, E–mail: <u>rafal.kruszynski@p.lodz.pl</u>

Schemes:

Scheme S1. Possible coordination modes of dicyanamide ligands.

Scheme S2. Possible coordination modes of azide ligands.

Scheme 3. Stages of the thermal decomposition of the studied compounds.

Tables:

 Table S1. Crystal data and structure refinement for compounds 1-5.

Table S2. Crystal data and structure refinement for compounds 6-9.

 Table S3. Short intra- and intermolecular contacts detected in the structures 1-9.

 Table S4. The selected bond lengths [Å] and angles[°] for 1

Table S5. The selected bond lengths [Å] and angles[°] for 2

Table S6. The selected bond lengths [Å] and angles[°] for **3**.

Table S7. The selected bond lengths [Å] and angles[°] for 4.

 Table S8. The selected bond lengths [Å] and angles[°] for 5.

 Table S9. The selected bond lengths [Å] and angles[°] for 6.

Table S10. The selected bond lengths [Å] and angles[°] for 7.

 Table S11. The selected bond lengths [Å] and angles[°] for 8.

Table S12. The selected bond lengths [Å] and angles[°] for 9.

Figures:

Figure S1. The powder XRD pattern of compound **1** (experimental - red) and the simulation of the powder pattern of **1** from the crystal structure (black).

Figure S2. The powder XRD pattern of compound **2** (experimental - red) and the simulation of the powder pattern of **2** from the crystal structure (black).

Figure S3. The powder XRD pattern of compound **3** (experimental - red) and the simulation of the powder pattern of **3** from the crystal structure (black).

Figure S4. The powder XRD pattern of compound **4** (experimental - red) and the simulation of the powder pattern of **4** from the crystal structure (black).

Figure S5. The powder XRD pattern of compound **5** (experimental - red) and the simulation of the powder pattern of **5** from the crystal structure (black).

Figure S6. The powder XRD pattern of compound **6** (experimental - red) and the simulation of the powder pattern of **6** from the crystal structure (black).

Figure S7. The powder XRD pattern of compound 7 (experimental - red) and the simulation of the powder pattern of 7 from the crystal structure (black).

Figure S8. The powder XRD pattern of compound **8** (experimental - red) and the simulation of the powder pattern of **8** from the crystal structure (black).

Figure S9. The powder XRD pattern of compound **9** (experimental - red) and the simulation of the powder pattern of **9** from the crystal structure (black).

Figure S10. The solid state luminescent decay curve of terpy.

Figure S11. The solid state luminescent decay curve of tppz.

Figure S12. The solid state luminescent decay curve of 1.

Figure S13. The solid state luminescent decay curve of 2.

Figure S14. The solid state luminescent decay curve of 3.

Figure S15. The solid state luminescent decay curve of 4.

Figure S16. The solid state luminescent decay curve of 5.

Figure S17. The solid state luminescent decay curve of 6.

Figure S18. The solid state luminescent decay curve of 7.

Figure S19. The solid state luminescent decay curve of 8.

Figure S20. The solid state luminescent decay curve of 9.

Figure S21. The luminescent decay curve of terpy in acetonitrile solution (10⁻⁴ M).

Figure S22. The luminescent decay curve of tppz in acetonitrile solution (10⁻⁴ M).

Figure S23. The luminescent decay curve of **4** in acetonitrile solution (10⁻⁴ M).

Figure S24. The luminescent decay curve of 5 in acetonitrile solution (10^{-4} M) .

Figure S25. The luminescent decay curve of 7 in acetonitrile solution (10^{-4} M) .

Figure S26. The reflectance spectra of the solid *terpy* and its cadmium complexes 1-5

Figure S27. The reflectance spectra of the solid *tppz* and its cadmium complexes 6-9

Figure S28. The absorption spectra of the free ligands and cadmium(II) complexes 4, 5 and 7 in acetonitrile solution (10^{-5} M)

Scheme S2. Possible coordination modes of dicyanamide ligands.

```
[Cd(terpy)(dca)(H_2O)]_n \bullet n(dca)
         Stage I m.l. 3.87% / 3.63%
         v.p.: H<sub>2</sub>O (357-408 K) endo
[Cd(terpy)(dca)]_n \bullet n(dca)
         Stage II m.l. 11.46% / 11.68%
         Stage IIa v.p.: CN<sup>+</sup>, CO, NO, N<sup>+</sup>, -O<sub>2</sub>; m.l. 3.68% / — (629-730 K) exo
         Stage IIb v.p.: CN<sup>+</sup>, CO<sup>+</sup>, CO<sub>2</sub><sup>+</sup>, NO, NO<sub>2</sub>, -O<sub>2</sub>; m.l. 7.78% / --- (730-751 K) exo
[CdO_{0.5}(terpy)(dca)]_n
         Stage III m.l. 11.30% / 11.68%
         Stage IIIa v.p.: CO, CO<sub>2</sub>, NO, NO<sub>2</sub>, -O<sub>2</sub>; m.l. 5.35% / — (751-760 K) exo
\downarrow
         Stage IIIb v.p.: CO<sub>2</sub>, NO<sub>2</sub>, -O<sub>2</sub>; m.l. 5.85% / — (760-767 K) exo
nCdO*•n(terpy)
         Stage IV m.l. 47.43% / 47.16%
\downarrow
         v.p.: CO, CO<sub>2</sub>, NO, NO<sub>2</sub>, H<sub>2</sub>O, -O<sub>2</sub> (757-890 K) exo
nCdO*
[Cd(tppz)(dca)(NO_3)]_n
         Stage I m.l. 17.51% / 17.82%
         v.p.: CO, CO<sub>2</sub>, NO, NO<sub>2</sub>, -O<sub>2</sub> (536-637 K) exo
nCdO* \bullet n(tppz)
         Stage III m.l. 61.50% / 61.76%
\downarrow
         v.p.: CO, CO<sub>2</sub>, NO, NO<sub>2</sub>, H<sub>2</sub>O, -O<sub>2</sub> (637-807 K) exo
nCdO*
[Cd(tppz)(dca)(NO<sub>3</sub>)(H<sub>2</sub>O)]
         Stage I m.l. 2.80% / 2.78%
         v.p.: H<sub>2</sub>O (374-425 K) endo
[Cd(tppz)(dca)(NO_3)]
         Stage II m.l. 17.51% / 17.32%
         v.p.: CO, CO<sub>2</sub>, NO, NO<sub>2</sub>, -O<sub>2</sub> (543-651 K) exo
CdO* \bullet (tppz)
         Stage III m.l. 59.86% / 60.04%
         Stage IIIa v.p.: CO, CO<sub>2</sub>, NO, NO<sub>2</sub>, H<sub>2</sub>O, -O<sub>2</sub>; m.l. 17.02% / --- (651-738 K) exo
         Stage IIIb v.p.: CO, CO<sub>2</sub><sup>+</sup>, -O<sub>2</sub>; m.l. 42.84% / — (738-854 K) exo
CdO*
```

Scheme 3. Stages of the thermal decomposition of the studied compounds (v.p. – main volatile products (including fragmentation ones) and oxygen uptake (- O_2) according to mass spectrometry, m.l. - experimental mass loss / theoretical mass loss, * - product was confirmed by XRPD)

	1	2	3	4	5
Empirical formula	$C_{17}H_{11}CdN_{7}O_{3}$	$C_{10}H_{13}CdN_{0}O$	$C_{15}H_{11}CdN_{7}O_{3}$	$C_{15}H_{13}CdN_{7}O_{4}$	$C_{30}H_{18}Cd_{2}N_{18}$
Formula weight	473.73	495.78	449.71	467.72	855.42
Temperature [K]	293.0(2)	293.0(2)	293.0(2)	293.0(2)	293.0(2)
Wavelength [Å]	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	monoclinic	triclinic	monoclinic	monoclinic	triclinic
Space group	$P2_1/n$	P-1	$P2_1/n$	$P2_1/n$	P-1
Unit cell dimensions [A °]	a = 8.5178(3)	a = 7.6683(3)	a = 8.15961(1)	a = 9.3280(5)	a= 7.7803(4)
	b = 14.4262(6)	b = 8.8264(4)	b = 11.21043(1)	b = 13.9183(5)	b = 10.2661(4)
	c = 14.9256(5)	c = 14.996(7)	c = 17.04066(1)	c = 13.8508(6)	c = 10.7220(5)
	R = 100.224(2)	$\alpha = 78.424(4)$ $\alpha = 70.804(4)$	R = 0.1 (1222)(2)	R = 100.222(5)	$\alpha = 81.920(4)$ $\alpha = 70.820(4)$
	p = 100.234(3)	p = 79.894(4) y = 81.624(4)	p = 94.4222(3)	p = 109.222(3)	p = 79.820(4) y = 75.630(4)
Valuma [Å 3]	1804 86(12)	972 45(7)	1554 116(1)	1698 00(13)	812 34(6)
Z	4	2	4	4	1
Density (calc.) $[Mg/m^3]$	1.743	1.693	1.922	1.830	1.749
Absorption coefficient [mm ⁻¹]	1.245	1.155	1.440	1.326	1.363
	224	10.0			
F(000)	936 0 158 × 0 141 × 0 110	492	888	928 0.054v0.025v0.024	420
Crystal size [mm]	0.138x0.141x0.119	0.112x0.103x0.043	0.1/0x0.094x0.000	0.034x0.033x0.034	0.204X0.111X0.079
θ range for data collection [°]	3.32 to 25.05	3.34 to 25.04	3.39 to 25.04	3.44 to 25.05	3.58 to 25.05
Index ranges	-10 < h < 10	$-9 \le h \le 9$	$8 \le h \le 8$	-11≤ h≤ 11	$-9 \le h \le 9$
C	$-17 \le k \le 14$	$-10 \le k \le 10$	$-13 \le k \le 13$	$-16 \le k \le 16$	$-12 \le k \le 12$
	$-17 \le l \le 16$	$-17 \le 1 \le 17$	$-20 \le 1 \le 20$	-16≤ l≤16	-12≤ 1≤12
Reflections collected	10263	8682	10245	19921	7622
Independent reflections	$3180 (R_{(int)} =$	3428 (R _(int)	2753 (R _(int)	2999 ($R_{(int)} =$	$2876 (R_{(int)} =$
	0.0348)	=0.0364)	=0.0363)	0.0374)	0.0396)
Completeness to 2theta [%]	99.7%	99.7%	99.7%	99.7%	99.7
Max. and min. transmiss.	1.000 and 0.768	1.000 and 0.934	1.000 and 0.844	1.000 and 0.789	1.000 and 0.733
Data / restraints / parameters	3180 / 0 / 264	3428 / 0 / 271	2753 / 0 / 235	2999 / 0 / 245	2876 / 0 / 226
Goodness-of-fit on F ²	1.029	1.036	1.043	1.053	0.994
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0340	R1 = 0.0279	R1 = 0.0262	R1 = 0.0247	R1 = 0.0320
	wR2 = 0.0716	wR2 = 0.0611	wR2 = 0.0547	wR2 = 0.0592	wR2 = 0.0690
R indices (all data)	R1 = 0.0504	R1 = 0.0339	R1 = 0.0330	R1 = 0.0339	R1 = 0.0384
	wR2 = 0.0759	wR2 = 0.0634	wR2 = 0.0568	wR2 =0.0619	wR2 = 0.0728
Largest diff neak and hale	0.560 and 0.402	0.355 and 0.500	0.350 and 0.400	0.402 and 0.462	0.406 and 0.524
[e Å ⁻³]	0.509 and -0.405	0.555 and -0.500	0.337 and -0.477	0.492 and -0.403	0.400 and -0.524

 Table S1. Crystal data and structure refinement for compounds 1-5.

	6	7	8	9
Empirical formula	$C_{26}H_{16}CdN_{10}O_{3}$	$C_{26}H_{18}CdN_{10}O_4$	$C_{13}H_{12}CdN_{7}O_{4}$	$C_{12}H_8CdN_9$
Formula weight Temperature [K] Wavelength [Å] Crystal system Space group Unit cell dimensions [Å, °]	628.89 293.0(2) 0.71073 monoclinic $P2_1/n$ a = 9.2897(4)	646.90 293.0(2) 0.71073 monoclinic $P2_1/n$ a = 14.204(5)	442.70 293.0(2) 0.71073 monoclinic $P2_{1}/c$ a = 9.4767(3)	390.67 293.0(2) 0.71073 triclinic P-1 a = 7.9227(7)
	b = 8.9304(3) c = 31.2856(11)	b = 9.8521(4) c = 18.7354(6)	b = 12.5129(4) c = 14.3126(5)	b = 8.9657(9) c = 10.1460(10) $\alpha = 74.850(8)$
	$\beta = 97.826$	$\beta = 94.64(3)$	$\beta = 106.191(4)$	$\beta = 74.240(8)$ $\gamma = 83.61(3)$
Volume [Å ³]	2571.30(17)	2613.2(9)	1629.89(9)	668.87(11)
2 Density (calc.) [Mg/m ³]	4 1.625	4 1.644	4 1.804	2 1.940
Absorption coefficient [mm ⁻¹] F(000)	0.900 1256	0.890 1296	1.375 876	1.644 382
Crystal size [mm]	0.157x0.070x0.044	0.182x0.047x0.038	0.192x0.086x0.053	0.492x0.147x0.087
Index ranges	$-10 \le h \le 11$	$-16 \le h \le 16$	$-11 \le h \le 11$	$-9 \le h \le 9$
	$-10 \le k \le 10$	$-10 \le k \le 11$	$-14 \le k \le 14$	$-10 \le k \le 10$
	$-37 \le l \le 36$	$-22 \le 1 \le 22$	$-17 \le l \le 16$	$-12 \le 1 \le 12$
Reflections collected Independent reflections	12531 4541 (R _(int) = 0.0464)	13616 4617 (R _(int) = 0.0417)	17079 14956 (R _(int) =0.0325)	6136 2363 (R _(int) =0.0392]
Completeness to 2theta [%] Max. and min. transmiss. Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2 σ (I)]	99.7% 1.000 and 0.550 4541 / 0 / 361 1.211 R1 = 0.0468	99.8% 1.000 and 0.713 4617 / 0 / 370 1.021 R1 = 0.0334	99.8% 1.000 and 0.766 2881 / 0 / 228 1.057 R1 = 0.0280	99.7% 1.000 and 0.667 2363 / 0 / 199 1.078 R1 = 0.0282
R indices (all data)	wR2 = 0.0948 R1 = 0.0746	wR2 = 0.0784 R1 = 0.0489	wR2 = 0.0681 R1 = 0.0341	wR2 = 0.0640 R1 = 0.0304
	wR2 = 0.0980	wR2 = 0.0840	wR2 = 0.0707	wR2 = 0.0652
Largest diff. peak and hole	0.649 and -0.705	0.576 and -0.452	0.649 and -0.583	0.530 and -0.587

[e Å ⁻³]

D—H•••A	D—H [Å]	H•••A [Å]	D•••A [Å]	D—H•••A [°]	
		1			
C(1) - H(1) - O(2)	0.93	2.52	3.213(4)	131.9	
C(13)—H(13)•••O(3) # 1	0.93	2.45	3.279(5)	147.8	
C(15) - H(15) - O(1)	0.93	2.58	3.236(5)	127.6	
		2			
$O(00) = H(1^{a}) = N(06) \# 2$	0.70	2 03	2820(4)	178 /	
O(99) - H(1P) = N(90) + 2 O(90) - H(1P) = N(94) + 3	1.02	2.03	2.820(4) 2.840(4)	1/0.4	
$C_{3} = H_{3} = N_{0} 6 \# 4$	0.02	2.61	2.040(4) 3.534(5)	105.0	
C_{3} H0 N05# 5	0.93	2.01	3.334(3)	1/1./	
$C_{14} = H_{14} = 000 \# 6$	0.93	2.01	3.412(4) 3.508(4)	144.0	
C14—1114····O99#0	0.95	2.39	5.508 (4)	107.7	
		3			
C4—H4•••N99_#7	0.93	2.52	3.408(4)	160.0	
С15-Н15•••О2	0.93	2.53	3.151(4)	124.5	
		4			
O99—H99A•••O3 #8	0.86	1.97	2.788(3)	156.6	
С1—Н1•••О2	0.93	2.57	3.259(4)	131.2	
C2—H2•••N99 #9	0.93	2.56	3.484(4)	173.5	
C4—H4•••O3 #7	0.93	2.24	3.141(4)	162.2	
C15—H15•••O1	0.93	2.44	3.106(4)	128.1	
		_			
		5			
C1—H1•••N94_#10	0.93	2.55	3.274(5)	135.1	
C3—H3•••N96 #11	0.93	2.57	3.270(6)	132.3	
C7—H7•••N95 [#] 12	0.93	2.53	3.361(4)	148.1	
C9—H9•••N99 [_] #5	0.93	2.54	3.457(5)	169.3	
		6			
C1—H1•••O1	0.93	2.51	3.143(8)	125.8	
C11—H11••• N98_#13	0.93	2.62	3.404(9)	142.6	
		7			
O99—H99A •••N6 #14	0.75	2.05	2.793(4)	175.3	
O99—H99B•••N97 ⁻ #14	0.66	2.37	3.005(4)	162.7	
C4—H4•••N4	0.93	2.61	2.959(5)	102.6	
C17—H17•••O3_#15	0.93	2.60	3.288(5)	131.3	
000 1100 00 111	0.02	8	0.70445	1 = 1 /	
U99—H99•••U2_#16	0.82	1.99	2.736(5)	151.6	
С9—Н9•••О99_#17	0.93	2.33	3.222(7)	159.4	
C12—H12•••O2	0.93	2.46	3.121(4)	128.3	
01 H1 NOT "10	0.02	9	2.255(5)	1 40 0	
CI—HI•••N95_#18	0.93	2.57	3.357(5)	143.0	
C2—H2•••N97_#3	0.93	2.60	3.476(5)	157.7	
С9 — Н9••• N97	0.93	2.60	3.274(4)	130.2	
C11—H11•••N95_#19	0.93	2.58	3.375(4)	144.1	

Table S3. Short intra- and	l intermolecular	[.] contacts de	etected in the	he structures 1	-9 .
----------------------------	------------------	--------------------------	----------------	-----------------	-------------

Symmetry transformations used to generate equivalent atoms:

#1=-1/2-x,-1/2+y,1/2-z; #2: 1+x,y-1,z; #3: 1+x,y,z; #4: 1-x,2-y,-z; #5= x,y-1,z; #6:= 2-x,-y,1-z; #7=1/2+x,3/2-y,-1/2+z; #8=-x,1-y,1-z; #9=-1/2-x,1/2+y; #10=1-x,1-y,2-z #11 =x,y,1+z; #12=1-x,-y,2-z #13=1/2-x,-1/2+y,3/2-z; #14=3/2-x,-1/2+y,3/2-z; #15=-1+x,y,z; #16=-x,1-y,-z; #17=1-x,1-y,-z #18=1-x,2-y,1-z #19-1+x,-1+y,1+z

Bond lengths		Bond a	angels
Cd(1)–N(1)	2.381(3)	N(2)-Cd(1)-N(1)	69.45(10)
Cd(1)-N(2)	2.338(3)	N(2)-Cd(1)-N(3)	69.23(9)
Cd(1)-N(3)	2.374(3)	N(3)-Cd(1)-O(1)	86.17(9)
Cd(1)–N(99)	2.293(3)	O(2)-Cd(1)-N(1)	84.74(9)
Cd(1)–N(97)	2.266(4)	O(2)-Cd(1)-O(1)	50.88(9)
Cd(1)-O(1)	2.556(3)	N(99)-Cd(1)-N(1)	85.92(11)
Cd(1)-O(2)	2.420(3)	N(99)-Cd(1)-O(1)	81.21(11)
C(98)-N(97)#1	1.107(5)	N(99)–Cd(1)–O(2)	82.23(11)
N(98)-C(98)	1.284(6)	N(99)-Cd(1)-N(2)	95.49(10)
N(98)-C(99)	1.284(6)	N(99)-Cd(1)-N(3)	99.13(10)
N(99)–C(99)	1.132(5)	N(97)-Cd(1)-N(1)	92.93(14)
		N(97)-Cd(1)-N(2)	99.58(13)
		N(97)-Cd(1)-N(3)	92.64(14)
		N(97)–Cd(1)–O(1)	88.04(14)
		N(97)–Cd(1)–O(2)	81.22(13)
		N(97)–Cd(1)–N(99)	163.44(14)
		N(97)#2-C(98)-N(98)	173.1(5)
		N(99)-C(99)-N(98)	172.9(4)
		C(99)–N(98)–C(98)	120.6(4)
		C(99)-N(99)-Cd(1)	141.2(3)

Table S4. The selected bond lengths [Å] and angles $[\circ]$ for 1

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,y+1/2; #2 -x+1/2,y-1/2,-z+1/2

Table S5. The selected bond lengths $[\text{\AA}]$ and angles[°] for 2

Bond lengths		Bonc	Bond angels		
Cd(1)–N(1)	2.371(2)	N(2)-Cd(1)-N(1)	69.42(8)		
Cd(1)-N(2)	2.322(2)	N(2)-Cd(1)-N(3)	70.29(8)		
Cd(1)-N(3)	2.354(2)	N(97)-Cd(1)-N(1)	95.02(10)		
Cd(1)–N(97)	2.229(3)	N(99)-Cd(1)-N(1)	93.44(9)		
Cd(1)–N(99)	2.283(3)	N(97)-Cd(1)-N(2)	159.69(9)		
Cd(1)-O(99)	2.387(2)	N(99)-Cd(1)-N(2)	99.35(8)		
N(99)–C(99)	1.143(4)	N(97)-Cd(1)-N(3)	123.81(10)		
C(99)–N(98)	1.295(4)	N(99)-Cd(1)-N(3)	93.82(9)		
N(98)-C(98)	1.299(4)	N(97)–Cd(1)–N(99)	94.40(9)		
C(98)–N(97)#1	1.136(4)	N(1)-Cd(1)-O(99)	92.73(8)		
C(97)–N(96)	1.141(5)	N(2)–Cd(1)–O(99)	87.35(8)		
N(95)-C(97)	1.292(5)	N(3)-Cd(1)-O(99)	84.57(8)		
C(96)–N(95)	1.302(5)	N(97)–Cd(1)–O(99)	80.24(8)		
C(96)–N(94)	1.145(4)	N(99)–Cd(1)–O(99)	172.16(8)		
		C(99)–N(98)–C(98)	121.3(3)		
		N(99)-C(99)-N(98)	173.3(3)		
		N(97)#1-C(98)-N(98)	173.7(3)		
		C(97)–N(95)–C(96)	121.5(3)		
		N(94)-C(96)-N(95)	174.3(4)		
		N(96)-C(97)-N(95)	173.2(4)		

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z.

Bond leng	gths	Bond	angles
Cd(1)–N(1)	2.361(2)	N(2)-Cd(1)-N(1)	69.34(8)
Cd(1)–N(2)	2.348(2)	N(2)-Cd(1)-N(3)	68.83(8)
Cd(1)–N(3)	2.392(2)	N(1)-Cd(1)-O(1)	88.67(8)
Cd(1)–N(97)	2.319(3)	N(2)-Cd(1)-O(2)	149.44(8)
Cd(1)–N(99)#1	2.439(3)	N(3)-Cd(1)-O(2)	83.48(8)
Cd(1)–O(1)	2.646(2)	N(97)–Cd(1)–N(1)	89.40(9)
Cd(1)–O(2)	2.363(2)	N(97)–Cd(1)–N(2)	103.59(9)
N(98)–N(99)	1.175(3)	N(97)–Cd(1)–N(3)	96.91(9)
N(98)–N(97)	1.173(4)	N(97)–Cd(1)–O(1)	78.92(9)
		N(97)–Cd(1)–O(2)	92.00(9)
		O(2)–Cd(1)–O(1)	50.63(7)
		O(2)-Cd(1)-N(99)#2	81.14(9)
		N(1)-Cd(1)-N(99)#2	81.35(9)
		N(2)-Cd(1)-N(99)#2	93.01(8)
		N(3)-Cd(1)-N(99)#2	104.20(9)
		N(98)–N(97)–Cd(1)	133.3(2)
		N(98)–N(99)–Cd(1)#1	122.0(2)
		N(97)-Cd(1)-N(99)#2	156.82(10)
		N(99)#2-Cd(1)-O(1)	79.65(8)
		N(97)–N(98)–N(99)	175.6(3)

Table S6. The selected bond lengths $[\text{\AA}]$ and angles $[^{\circ}]$ for 3

Symmetry transformations used to generate equivalent atoms: #1 -x+3/2,y+1/2,-z+1/2; #2 -x+3/2,y-1/2,-z+1/2

 Table S7. The selected bond lengths [Å] and angles[°] for 4.

Bond lengths	Experimental	Bond angels	Experimental
Cd(1)-N(1)	2.359(2)	N(2)-Cd(1)-N(1)	69.69(8)
Cd(1)-N(2)	2.332(2)	N(2)-Cd(1)-N(3)	69.42(8)
Cd(1)-N(3)	2.368(2)	N(99)-Cd(1)-N(1)	90.89(9)
Cd(1)–N(99)	2.293(3)	N(99)-Cd(1)-N(2)	99.42(9)
Cd(1)-O(1)	2.407(2)	N(99)-Cd(1)-N(3)	97.47(9)
Cd(1)–O(2)	2.530(2)	N(99)–Cd(1)–O(1)	91.34(9)
Cd(1)-O(99)	2.369(2)	N(99)–Cd(1)–O(2)	84.23(10)
N(98)–N(97)	1.151(4)	N(99)–Cd(1)–O(99)	163.47(10)
N(98)–N(99)	1.166(4)	N(1)-Cd(1)-O(99)	84.27(8)
		N(2)-Cd(1)-O(99)	93.72(8)
		N(3)-Cd(1)-O(99)	96.52(8)
		N(1)-Cd(1)-O(1)	136.82(8)
		N(3)-Cd(1)-O(1)	83.18(7)
		N(1)-Cd(1)-O(2)	86.25(8)
		O(99)-Cd(1)-O(1)	81.61(8)
		O(99)-Cd(1)-O(2)	79.70(8)
		O(2)-Cd(1)-O(1)	51.16(8)
		N(97)–N(98)–N(99)	177.9(4)
		N(98)-N(99)-Cd(1)	119.0(2)

Bond lengths		Bond an	Bond angles		
Cd(1)–N(1)	2.366(3)	N(2)-Cd(1)-N(1)	69.88(9)		
Cd(1)-N(2)	2.330(3)	N(2)-Cd(1)-N(3)	68.81(9)		
Cd(1)–N(3)	2.398(3)	N(1)-Cd(1)-N(97)#1	83.81(10)		
Cd(1)–N(94)	2.257(3)	N(2)-Cd(1)-N(97)#1	90.43(9)		
Cd(1)–N(97)	2.274(3)	N(3)-Cd(1)-N(97)#1	95.25(10)		
Cd(1)-N(97)#1	2.436(3)	N(94)-Cd(1)-N(1)	99.06(11)		
N(94)–N(95)	1.190(5)	N(94)-Cd(1)-N(2)	101.85(10)		
N(95)–N(96)	1.156(5)	N(94)-Cd(1)-N(3)	90.49(11)		
N(97)–N(98)	1.204(4)	N(94)Cd(1)N(97)	93.23(11)		
N(98)–N(99)	1.155(4)	N(97)–Cd(1)–N(1)	116.02(10)		
		N(97)–Cd(1)–N(2)	162.87(11)		
		N(97)–Cd(1)–N(3)	103.34(10)		
		N(94)Cd(1)N(97)#1	167.65(10		
		N(97)-Cd(1)-N(97)#1	74.82(11)		
		N(95)–N(94)–Cd(1)	119.0(3)		
		N(98)–N(97)–Cd(1)	121.0(2)		
		N(98)–N(97)–Cd(1)#1	121.4(2)		
		Cd(1)-N(97)-Cd(1)#1	105.18(11)		
		N(96)-N(95)-N(94)	175.9(4)		
		N(99)-N(98)-N(97)	177.8(4)		

 Table S8. The selected bond lengths [Å] and angles[°] for 5.

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+2.

Table S9. The selected bond lengths [Å] and angles $[\circ]$ for **6**.

Bond lengths		Bond a	Bond angles		
Cd(1)–N(1)	2.377(4)	N(2)-Cd(1)-N(1)	67.67(14)		
Cd(1)–N(2)	2.391(4)	N(2)–Cd(1)–N(3)	68.69(14)		
Cd(1)–N(3)	2.325(4)	N(99)-Cd(1)-N(1)	87.20(19)		
Cd(1)–N(97)	2.351(6)	N(99)–Cd(1)–N(2)	100.3(2)		
Cd(1)-N(99)	2.307(6)	N(99)–Cd(1)–N(3)	90.9(2)		
Cd(1)–O(1)	2.363(4)	N(97)–Cd(1)–N(1)	94.56(16)		
Cd(1)–O(2)	2.459(5)	N(97)–Cd(1)–N(2)	81.95(17)		
N(97)–C(98)	1.130(7)	N(97)–Cd(1)–N(3)	88.97(17)		
C(98)–N(98)	1.275(9)	N(99)–Cd(1)–N(97)	177.6(2)		
N(99)–C(99)	1.119(9)	C(98)–N(97)–Cd(1)	156.1(5)		
C(99)-N(98)#1	1.303(10)	C(99)–N(99)–Cd(1)	146.5(6)		
N(98)-C(99)#2	1.303(10)	N(1)-Cd(1)-O(1)	83.96(16)		
		N(3)-Cd(1)-O(2)	88.73(16)		
		N(99)–Cd(1)–O(1)	92.1(2)		
		N(99)–Cd(1)–O(2)	88.9(2)		
		N(97)–Cd(1)–O(1)	86.42(19)		
		N(97)–Cd(1)–O(2)	88.7(2)		
		N(7)-O(1)-Cd(1)	96.9(3)		
		N(7)-O(2)-Cd(1)	92.2(3)		
		O(1)-Cd(1)-O(2)	52.32(16)		
		N(99)-C(99)-N(98)#1	173.4(8)		
		N(97)-C(98)-N(98)	172.1(7)		
		C(98)–N(98)–C(99)#2	126.3(6)		

Symmetry transformations used to generate equivalent atoms: #1 x,y-1,z; #2 x,y+1,z

Bond	lengths	Bond an	igles
Cd(1)–N(1)	2.386(3)	N(2)-Cd(1)-N(1)	68.54(9)
Cd(1)–N(2)	2.362(2)	N(3)-Cd(1)-N(2)	69.34(9)
Cd(1)–N(3)	2.355(3)	N(97)-Cd(1)-N(1)	87.49(10)
Cd(1)–N(97)	2.365(3)	N(97)–Cd(1)–N(2)	79.70(10)
Cd(1)–O(1)	2.358(3)	N(97)–Cd(1)–N(3)	93.73(10)
Cd(1)–O(2)	2.468(3)	O(99)-Cd(1)-N(1)	95.63(9)
Cd(1)–O(99)	2.272(2)	O(99)–Cd(1)–N(2)	102.90(9)
N(97)–C(98)	1.142(5)	O(99)–Cd(1)–N(3)	85.07(9)
N(98)–C(98)	1.283(5)	O(99)–Cd(1)–O(1)	88.70(9)
N(98)–C(99)	1.287(6)	O(99)–Cd(1)–O(2)	91.12(9)
N(99)–C(99)	1.116(6)	O(99)–Cd(1)–N(97)	176.50(10)
		N(97)–Cd(1)–O(1)	89.92(11)
		N(97)–Cd(1)–O(2)	85.49(10)
		N(1)-Cd(1)-O(1)	86.20(9)
		N(3)-Cd(1)-O(2)	84.65(8)
		O(1)-Cd(1)-O(2)	52.76(9)
		C(98)–N(97)–Cd(1)	131.3(3)
		C(98)-N(98)-C(99)	122.2(4)
		N(97)-C(98)-N(98)	172.3(4)
		N(99)-C(99)-N(98)	173.7(6)

 Table S10. The selected bond lengths [Å] and angles[°] for 7.

 Table S11. The selected bond lengths [Å] and angles[°] for 8.

Bond	lengths	Bond a	angles
Cd(1)–N(1)	2.401(3)	N(2)-Cd(1)-N(1)	65.81(8)
Cd(1)-N(2)	2.519(3)	N(2)-Cd(1)-N(3)	64.59(8)
Cd(1)–N(3)	2.476(3)	N(97)#1-Cd(1)-N(1)	103.21(10)
Cd(1)-N(97)#1	2.283(3)	N(97)#1-Cd(1)-N(2)	88.08(9)
Cd(1)–N(97)	2.442(3)	N(97)#1-Cd(1)-N(3)	90.16(9)
Cd(1)–O(1)	2.324(3)	N(97)-Cd(1)-N(1)	86.23(9)
Cd(1)–O(2)	2.474(3)	N(97)–Cd(1)–N(2)	142.99(9)
N(97)–N(98)	1.194(4)	N(97)–Cd(1)–N(3)	145.44(10)
N(98)-N(99)	1.148(4)	N(98)–N(97)–Cd(1)#1	122.8(2)
		N(98)–N(97)–Cd(1)	125.6(2)
		Cd(1)#1–N(97)–Cd(1)	105.31(11)
		N(97)#1-Cd(1)-N(97)	74.69(11)
		N(1)-Cd(1)-O(1)	84.27(9)
		N(2)-Cd(1)-O(1)	100.42(9)
		N(3)-Cd(1)-O(1)	89.73(9)
		N(1)-Cd(1)-O(2)	130.33(9)
		N(2)-Cd(1)-O(2)	139.13(9)
		N(3)-Cd(1)-O(2)	82.28(9)
		N(97)#1-Cd(1)-O(1)	170.51(10)
		N(97)–Cd(1)–O(1)	100.31(10)
		N(97)#1-Cd(1)-O(2)	116.56(10)
		N(97)–Cd(1)–O(2)	77.43(9)
		N(4)-O(1)-Cd(1)	95.6(2)
		N(4)-O(2)-Cd(1)	88.7(2)
		O(1)-Cd(1)-O(2)	54.05(9)
		N(99)–N(98)–N(97)	178.9(4)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z.

Table S12. The selected bond lengths [Å] and angles[°] for 9.

$\begin{array}{c} 2.497(3) \\ 2.564(2) \\ 2.424(3) \\ 2.576(3) \\ 2.246(3) \\ 2.279(3) \\ 2.454(3) \\ 1.186(4) \end{array}$	N(1)-Cd(1)-N(2) N(3)#1-Cd(1)-N(1) N(3)#1-Cd(1)-N(2) N(1)-Cd(1)-N(94) N(2)-Cd(1)-N(94) N(3)#1-Cd(1)-N(94) N(3)#1-Cd(1)-N(99)#2	63.31(8) 121.19(8) 63.77(8) 82.57(10) 142.40(10) 153.83(11) 82.83(9)
2.564(2) 2.424(3) 2.576(3) 2.246(3) 2.279(3) 2.454(3) 1.186(4)	N(3)#1-Cd(1)-N(1) N(3)#1-Cd(1)-N(2) N(1)-Cd(1)-N(94) N(2)-Cd(1)-N(94) N(3)#1-Cd(1)-N(94) N(3)#1-Cd(1)-N(99)#2	$ \begin{array}{c} 121.19(8) \\ 63.77(8) \\ 82.57(10) \\ 142.40(10) \\ 153.83(11) \\ 82.83(9) \end{array} $
2.424(3) 2.576(3) 2.246(3) 2.279(3) 2.454(3) 1.186(4)	N(3)#1-Cd(1)-N(2) N(1)-Cd(1)-N(94) N(2)-Cd(1)-N(94) N(3)#1-Cd(1)-N(94) N(3)#1-Cd(1)-N(99)#2	63.77(8) 82.57(10) 142.40(10) 153.83(11) 82.83(9)
2.576(3) 2.246(3) 2.279(3) 2.454(3) 1.186(4)	N(1)-Cd(1)-N(94) N(2)-Cd(1)-N(94) N(3)#1-Cd(1)-N(94) N(3)#1-Cd(1)-N(99)#2	82.57(10) 142.40(10) 153.83(11) 82.83(9)
2.246(3) 2.279(3) 2.454(3) 1.186(4)	N(2)-Cd(1)-N(94) N(3)#1-Cd(1)-N(94) N(3)#1-Cd(1)-N(99)#2	142.40(10) 153.83(11) 82.83(9)
2.279(3) 2.454(3) 1.186(4)	N(3)#1-Cd(1)-N(94) N(3)#1-Cd(1)-N(99)#2	153.83(11) 82.83(9)
2.454(3) 1.186(4)	N(3)#1-Cd(1)-N(99)#2	82.83(9)
1.186(4)	N(00) = C(1(1) - N(1))	
	N(99)-Cd(1)-N(1)	90.76(9)
1.155(4)	N(99)-Cd(1)-N(2)	81.55(9)
1.170(4)	N(99)#2-Cd(1)-N(1)	155.35(9)
1.151(4)	N(99)#2-Cd(1)-N(2)	133.17(9)
	N(99)-Cd(1)-N(3)#1	105.07(9)
	N(99)-Cd(1)-N(94)	83.72(11)
	N(99)#2-Cd(1)-N(94)	75.26(11)
	N(99)-Cd(1)-N(99)#2	76.39(11)
	N(98)-N(99)-Cd(1)	121.3(2)
	N(98)-N(99)-Cd(1)#2	130.5(2)
	N(97)–N(98)–N(99)	179.3(4)
	N(96)-Cd(1)-N(1)	94.15(11)
	N(96)-Cd(1)-N(2)	111.68(10)
	N(96)-Cd(1)-N(3)#1	82.88(10)
	N(96)-Cd(1)-N(99)	166.71(10)
	N(96)-Cd(1)-N(99)#2	94.38(11)
	N(96)-Cd(1)-N(94)	84.68(11)
	N(95)#3–N(94)–Cd(1)	130.8(3)
	N(95)–N(96)–Cd(1)	130.6(3)
	N(94)#3-N(95)-N(96)	175.4(4)
	Cd(1)–N(99)–Cd(1)#2	103.61(11)
	1.170(4) 1.151(4) generate equivalent a	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Figure S1. The powder XRD pattern of compound 1 (experimental - black) and the simulation of the powder pattern of 1 from the crystal structure (red).

Figure S2. The powder XRD pattern of compound 2 (experimental - black) and the simulation of the powder pattern of 2 from the crystal structure (red).

Figure S3. The powder XRD pattern of compound 3 (experimental - black) and the simulation of the powder pattern of 2 from the crystal structure (red).

Figure S4. The powder XRD pattern of compound 4 (experimental - black) and the simulation of the powder pattern of 1 from the crystal structure (red).

Figure S5. The powder XRD pattern of compound 5 (experimental - black) and the simulation of the powder pattern of 5 from the crystal structure (red).

Figure S6. The powder XRD pattern of compound 6 (experimental - black) and the simulation of the powder pattern of 6 from the crystal structure (red).

Figure S7. The powder XRD pattern of compound 7 (experimental - black) and the simulation of the powder pattern of 7 from the crystal structure (red).

Figure S7. The powder XRD pattern of compound 8 (experimental - black) and the simulation of the powder pattern of 8 from the crystal structure (red).

Figure S9. The powder XRD pattern of compound 9 (experimental - black) and the simulation of the powder pattern of 7 from the crystal structure (red).

Figure S10. The solid state luminescent decay curve of terpy.

Figure S11. The solid state luminescent decay curve of tppz.

Figure S12. The solid state luminescent decay curve of 1.

Figure S13. The solid state luminescent decay curve of 2.

Figure S14. The solid state luminescent decay curve of 3.

Figure S15. The solid state luminescent decay curve of 4.

Figure S16. The solid state luminescent decay curve of 5.

Figure S17. The solid state luminescent decay curve of 6.

Figure S18. The solid state luminescent decay curve of 7.

Figure S19. The solid state luminescent decay curve of 8.

Figure S20. The solid state luminescent decay curve of 9.

Figure S21. The luminescent decay curve of terpy in acetonitrile solution (10⁻⁴ M).

Figure S22. The luminescent decay curve of tppz in acetonitrile solution (10⁻⁴ M).

Figure S23. The luminescent decay curve of 4 in acetonitrile solution (10^{-4} M).

Figure S24. The luminescent decay curve of 5 in acetonitrile solution (10^{-4} M) .

Figure S25. The luminescent decay curve of 7 in acetonitrile solution (10^{-4} M).

Figure S26. The reflectance spectra of the solid *terpy* and its cadmium complexes 1-5

Figure S27. The reflectance spectra of the solid *tppz* and its cadmium complexes 6-9

Figure S28. The absorption spectra of the free ligands and cadmium(II) complexes 4, 5 and 7 in acetonitrile.