A crystallographic, computational study and Hirshfeld surface analysis of how aryl-bound substituents influence the nature of hydrogen bonds, N–H…N and N–H…O, in the crystal structures of 1-(arylamino)-1,2,3-triazole-4carbohydrazides[†]

Saikat K. Seth,^a Vannajan Sanghiran Lee,^b Janchai Yana,^c Sharifuddin M. Zain,^b Anna C. Cunha,^d Vitor F. Ferreira,^d Alessandro K. Jordão,^d Maria C.B.V. de Souza,^d Solange M.S.V. Wardell,^{*e} James L. Wardell^f and Edward R.T. Tiekink^{*b}

^a Department of Physics, M. G. Mahavidyalaya, Bhupatinagar, Purba Medinipur, West Bengal-721425, India

^b Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: Edward.Tiekink@um.edu.my; Fax: +60 3 7967 4193; Tel: +60 3 7697 6775

^c Department of Chemistry, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai 50300, Thailand

^d Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Outeiro de São João Baptista, 24020-141 Niterói, RJ, Brazil

^e CHEMSOL, 1 Harcourt Road, Aberdeen, AB15 5NY, Scotland. E-mail: solangewardell@gmail.com ^f Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365,21040-900, Rio de Janeiro, RJ, Brazil

Natural Charge	1a			1b			2			3		
Atom	Optimised	Unoptimised	Diff (Opt- Unopt)									
C1	0.62979	0.61778	0.01201	0.6295	0.62057	0.00893	0.62948	0.62079	0.00869	0.62876	0.61679	0.01197
H1	0.35299	0.32568	0.02731	0.35294	0.33219	0.02075	0.35378	0.32743	0.02635	0.35404	0.32874	0.0253
H2	0.35281	0.329	0.02381	0.35274	0.32394	0.0288	0.35265	0.32734	0.02531	0.35256	0.32328	0.02928
Н3	0.40383	0.36506	0.03877	0.40373	0.36654	0.03719	0.40368	0.36803	0.03565	0.40368	0.36349	0.04019
C2	- 0.01797	-0.02191	0.00394	- 0.01805	-0.01963	0.00158	- 0.01726	-0.01849	0.00123	- 0.01717	-0.01922	0.00205
H4	0.38429	0.35493	0.02936	0.38457	0.35562	0.02895	0.38463	0.3551	0.02953	0.38587	0.34961	0.03626
Н5	0.22697	0.21631	0.01066	0.22567	0.20998	0.01569	0.22683	0.22268	0.00415	0.22551	0.20981	0.0157
01	0.64653	-0.66382	0.01729	0.64625	-0.66242	0.01617	0.64556	-0.65635	0.01079	0.64509	-0.65751	0.01242
C3	0.2219	0.23703	0.01513	0.2218	0.23333	0.01153	0.22194	0.23192	- 0.00998	0.2224	0.23399	- 0.01159
C4	- 0.62149	-0.57465	- 0.04684	-0.6211	-0.57594	0.04516	- 0.62159	-0.57341	- 0.04818	-0.6205	-0.57753	- 0.04297
H6	0.25682	0.23037	0.02645	0.25565	0.23104	0.02461	0.25747	0.22236	0.03511	0.22865	0.21383	0.01482
H7	0.22572	0.2102	0.01552	0.22793	0.21599	0.01194	0.22599	0.21025	0.01574	0.2556	0.23418	0.02142
H8, Cl1 of Cl2	0.20565	0.17602	0.02963	0.2058	0.1761	0.0297	0.21	0.1786	0.0314	0.21065	0.18029	0.03036
N1	- 0.62855	-0.57057	- 0.05798	0.62853	-0.57189	- 0.05664	- 0.62841	-0.57662	- 0.05179	0.62836	-0.56844	- 0.05992
N2	- 0.45348	-0.40402	- 0.04946	- 0.45361	-0.40223	0.05138	- 0.45299	-0.4044	- 0.04859	-0.4529	-0.39886	- 0.05404
N3	- 0.25604	-0.24958	- 0.00646	- 0.25578	-0.25672	0.00094	- 0.25468	-0.24918	-0.0055	0.25318	-0.24946	0.00372
N4	- 0.06651	-0.08012	0.01361	- 0.06767	-0.07709	0.00942	- 0.06869	-0.08068	0.01199	- 0.06886	-0.07399	0.00513
Н9	0.2073	0.1739	0.0334	0.20734	0.17359	0.03375	0.22557	0.19351	0.03206	0.2237	0.18937	0.03433
C7	0.15868	0.17247	- 0.01379	0.15851	0.17074	0.01223	0.14375	0.15621	- 0.01246	0.15595	0.16507	0.00912
C8	- 0.23774	-0.21463	0.02311	0.23752	-0.21387	0.02365	- 0.21736	-0.19011	- 0.02725	0.22003	-0.1941	- 0.02593
H10, Cl1, F1, Br1	0.20814	0.17469	0.03345	0.20818	0.17537	0.03281						
C9	- 0.17865	-0.14198	- 0.03667	-0.1788	-0.14175	0.03705	- 0.24166	-0.21313	0.02853	0.20041	-0.17305	- 0.02736
H11, Cl2	0.20762	0.17319	0.03443	0.20766	0.17316	0.0345	0.22595	0.19371	0.03224	0.22396	0.18933	0.03463
C10	- 0.22585	-0.1933	0.03255	- 0.22569	-0.19554	0.03015	0.39218	0.4033	- 0.01112	- 0.05775	-0.04544	- 0.01231
C11	- 0.17445	-0.13548	- 0.03897	- 0.17459	-0.13409	-0.0405	0.23898	-0.20875	0.03023	- 0.19694	-0.16927	- 0.02767
H12	0.21557	0.18134	0.03423	0.21561	0.1823	0.03331	0.21982	0.18569	0.03413	0.22051	0.18344	0.03707
C12	0.24658	-0.22387	0.02271	0.24636	-0.2245	0.02186	- 0.22647	-0.199	- 0.02747	0.22866	-0.19014	0.03852
F1							- 0.35385	-0.35875	0.0049			
Cl1										0.00247	0.00567	-0.0032
N5	- 0.06982	-0.06241	- 0.00741	- 0.06914	-0.06275	- 0.00639	- 0.07122	-0.06481	- 0.00641	- 0.07111	-0.06593	- 0.00518
N6	-0.4344	-0.40163	0.03277	- 0.43454	-0.40203	0.03251	- 0.43499	-0.40324	- 0.03175	0.43335	-0.40397	- 0.02938

 Table S(1).
 Natural Charge for 1–5 calculated on geometry optimised structures and experimental (crystallographic) structures.

Natural Charge		4		5			
Atom	Optimised	Unoptimised	Diff (Opt- Unopt)	Optimised	Unoptimised	Diff (Opt- Unopt)	
C1	0.62946	0.61954	0.00992	0.62974	0.61927	0.01047	
H1	0.35326	0.33038	0.02288	0.35359	0.32553	0.02806	
H2	0.35331	0.32054	0.03277	0.35344	0.32597	0.02747	
H3	0.4038	0.36508	0.03872	0.40404	0.36457	0.03947	
C2	-0.01674	-0.01865	0.00191	-0.01564	-0.01785	0.00221	
H4	0.38578	0.34639	0.03939	0.40269	0.36579	0.0369	
Н5	0.22583	0.21064	0.01519	0.22722	0.21792	0.0093	
01	-0.64524	-0.66083	0.01559	-0.64423	-0.65683	0.0126	
C3	0.22196	0.23513	-0.01317	0.22298	0.2365	-0.01352	
C4	-0.6218	-0.57784	-0.04396	-0.62175	-0.57555	-0.0462	
H6	0.22703	0.21212	0.01491	0.22651	0.21071	0.0158	
H7	0.25791	0.23652	0.02139	0.25922	0.23107	0.02815	
H8, Cl1 of Cl2	0.21078	0.18016	0.03062				
N1	-0.62832	-0.56623	-0.06209	-0.62806	-0.56711	-0.06095	
N2	-0.4526	-0.40098	-0.05162	-0.45181	-0.40353	-0.04828	
N3	-0.25374	-0.25018	-0.00356	-0.24926	-0.24937	0.00011	
N4	-0.06689	-0.07166	0.00477	-0.0631	-0.08169	0.01859	
H9	0.22396	0.18908	0.03488	0.2275	0.19224	0.03526	
C7	0.15816	0.16762	-0.00946	0.15295	0.14933	0.00362	
C8	-0.22046	-0.19525	-0.02521	-0.0715	-0.07207	0.00057	
H10, Cl1, F1, Br1				0.22803	0.19314	0.03489	
C9	-0.20159	-0.17125	-0.03034	-0.187	-0.15761	-0.02939	
H11, Cl2	0.22421	0.18914	0.03507				
C10	-0.12315	-0.11018	-0.01297	-0.23487	-0.19663	-0.03824	
C11	-0.19808	-0.17194	-0.02614	-0.01771	-0.01174	-0.00597	
H12	0.22082	0.18339	0.03743	0.23476	0.20366	0.0311	
C12	-0.2293	-0.18699	-0.04231	-0.25317	-0.22759	-0.02558	
Br1	0.06608	0.0671	-0.00102				
Cl1				0.00632	0.02189	-0.01557	
Cl2				0.0176	0.02243	-0.00483	
N5	-0.07192	-0.06956	-0.00236	-0.07952	-0.06668	-0.01284	
N6	-0.43251	-0.40127	-0.03124	-0.42898	-0.39577	-0.03321	

Table S(1) continued

(a)

(b)

Figure S(1). Molecular structures of the two independent molecules comprising the asymmetric unit of (1), showing atom labelling and displacement ellipsoids at the 50% probability level.

Figure S(2). Molecular structure of (2), showing atom labelling and displacement ellipsoids at the 50% probability level.

Figure S(3). Molecular structure of (**3**), showing atom labelling and displacement ellipsoids at the 50% probability level.

Figure S(4). Molecular structure of (4), showing atom labelling and displacement ellipsoids at the 50% probability level.

Figure S(5). Molecular structure of (5), showing atom labelling and displacement ellipsoids at the 50% probability level.

Figure S(6). Crystal packing in 2: view in projection down the *b*-axis of the unit cell contents highlighting the inter-digitation of layers. The N–H…O, N–H…N and π … π interactions are shown as orange, blue and purple dashed lines, respectively.

Figure S(7). Crystal packing in 4: view in projection down the *a*-axis of the unit cell contents highlighting the inter-digitation of layers. The N–H…O, N–H…N, N–H… π , C–Br… π and π … π interactions are shown as orange, blue, purple, brown and pink dashed lines, respectively.

Figure S(8) Hirshfeld surfaces mapped with curvedness for 1–5. For compound 1, with two molecules in the asymmetric unit, these are denoted by 'A' and 'B'.

Figure S(9) Fingerprint plots resolved into $C_{\pi} \cdots C_{\pi}$ contacts for **1–5**. For compound **1**, with two molecules in the asymmetric unit, these are denoted by '*A*' and '*B*'.