Supporting Information

In Situ Generation of Functionality in a Reactive Binicotinic-Acid-Based Ligand for the Design of Multi-Functional Copper (II) Complexes: Syntheses, Structures and Properties

Dongsheng Deng,^a Hui Guo,^a Guohui Kang,^{a,b} Lufang Ma,^a Baoming Ji^{a*}

^a College of Chemistry and Chemical Engineering, Luoyang Normal University,
 Luoyang 471022, P. R. China.

^b College of Chemistry and Chemical Engineering, Zhengzhou University, Zhengzhou
450052, P. R. China.

^{*} Corresponding author. Fax: +86-379-65523821. Tel: +86-379-65523821. E-mail: lyhxxjbm@126.com

Figure S1. Comparison of the experimental and simulated PXRD patterns of complexes 1, 2, 4, and 5. The top is the experimental pattern, and the bottom is the simulated one

Figure S2. The thermogravimetry curves of **2**, **4**, and **5**.

Figure S3. PXRD patterns of 1: (a) the as-synthesis pattern, (b) dehydrated solid obtained on heating at 120 °C for 8 h under vacuum, (c) after the first recycling, (d) second, (e) third, and (f) after the fourth recycling. (g) the simulated XRD pattern.

Figure S4. PXRD patterns of **2**: (a) the as-synthesis pattern, (b) dehydrated solid obtained on heating at 120 °C for 8 h under vacuum, (c) after the first recycling, (d) second, (e) third, and (f) after the fourth recycling. (g) the simulated XRD pattern.

NMR data

2H), 6.69 (d, *J* = 8 Hz, 2H), 5.34 (d, *J* = 8 Hz, 1H), 3.84 (d, *J* = 8 Hz, 1H), 2.39 (s, 3H), 2.28 (s, 3H). ¹³C NMR δ: 20.63, 21.32, 50.63, 114.60, 116.63, 127.30, 129.83, 130.08, 130.19, 131.39, 139.66, 142.63.

4. 2-(*p*-tolylamino)-2-(4-methoxyphenyl)acetonitrile (**Table 2, entry 4**). Little yellow solid, yield, 23 mg, 92%. ¹H NMR (400 MHz, CDCl₃) δ = 7.48 (d, *J* = 8 Hz, 2H), 7.06 (d, *J* = 8 Hz, 2H), 6.94 (d, *J* = 8 Hz, 2H), 6.67 (d, *J* = 8 Hz, 2H), 5.32 (s, 1H), 3.86 (s, 1H), 3.83 (s, 3H), 2.27 (s, 3H). ¹³C NMR δ: 20.62, 50.20, 55.63, 114.27, 114.50, 114.68, 118.69, 126.21, 128.72, 129.71, 130.14, 142.55.

5. 2-(4-chlorophenylamino)-2-p-tolylacetonitrile (**Table 2, entry 5**). Little yellow solid, yield, 24 mg, 94%. ¹H NMR (400 MHz, CDCl₃) δ = 7.45 (d, *J* = 8 Hz, 2H), 7.26 (d, *J* = 8 Hz, 2H), 7.21 (d, *J* = 8 Hz, 2H), 6.69 (d, *J* = 8 Hz, 2H), 5.33 (d, *J* = 8 Hz, 1H), 4.01 (d, *J* = 8 Hz, 1H), 2.40 (s, 3H). ¹³C NMR δ : 21.34, 50.17, 115.44, 118.15, 125.19, 127.28, 129.60, 130.19, 130.68, 139.94, 143.38. 6. *2-(p-tolylamino)-2-phenylacetonitrile* (**Table 2, entry 6**). Little yellow solid, yield, 21 mg, 93%. ¹H NMR (400 MHz, CDCl₃) δ = 7.59 (d, *J* = 4 Hz, 2H), 7.44 (d, *J* = 4 Hz, 3H), 7.07 (d, *J* = 8 Hz, 2H), 6.69 (d, *J* = 8 Hz, 2H), 5.38 (d, *J* = 8 Hz, 1H), 3.90 (d, *J* = 8 Hz, 1H), 2.28 (s, 3H). ¹³C NMR δ : 20.63, 50.78, 114.57, 118.46, 127.38, 129.42, 129.59, 130.18, 134.21, 142.49.

7. 2-(4-methoxyphenylamino)-2-p-tolylacetonitrile (**Table 2, entry 7**). Little yellow solid, yield, 23 mg, 92%. ¹H NMR (400 MHz, CDCl₃) δ = 7.47 (d, *J* = 8 Hz, 2H), 7.26 (s, 2H), 6.84 (d, *J* = 8 Hz, 2H), 6.75 (d, *J* = 8 Hz, 2H), 5.31 (s, 1H), 3.78 (s, 3H), 3.76 (s, 1H), 2.39 (s, 3H). ¹³C NMR δ :

21.33, 51.47, 55.81, 115.14, 116.38, 118.74, 127.31, 130.05, 131.36, 138.60, 139.53, 154.23.

8. 2-(4-methoxyphenylamino)-2-(4-methoxyphenyl)acetonitrile (Table 2, entry 8). Little yellow solid, yield, 25 mg, 92%. ¹H NMR (400 MHz, CDCl₃) δ = 7.49 (d, J = 8 Hz, 2H), 6.94 (d, J = 8 Hz, 3H), 6.83 (d, J = 12 Hz, 2H), 6.74 (d, J = 8 Hz, 2H), 5.27 (d, J = 8 Hz, 1H), 3.83 (s, 3H), 3.77 (s, 3H), 3.74 (s, 1H). NMR δ: 51.10, 55.54, 55.77, 114.66, 115.09, 116.34, 118.80, 126.26, 128.73, 138.76, 134.16, 160.46.

9. 2-(4-methoxyphenylamino)-2-phenylacetonitrile (Table 2, entry 9). Little yellow solid, yield,
22 mg, 94%. ¹H NMR (400 MHz, CDCl₃) δ = 7.59 (d, J = 8 Hz, 2H), 7.44 (d, J = 8 Hz, 2H),
6.84 (d, J = 8 Hz, 1H), 6.75 (d, J = 8 Hz, 1H), 5.34 (d, J = 8 Hz, 1H), 3.79 (d, J = 8 Hz, 1H), 3.77 (s, 3H). ¹³C NMR δ: 51.64, 55.76, 115.07, 116.36, 118.58, 127.38, 129.38, 129.57, 134.19, 138.65, 154.18.

10. 2-(4-chlorophenylamino)-2-phenylacetonitrile (**Table 2, entry 10**). Little yellow solid, yield,
23 mg, 94%. ¹H NMR (400 MHz, CDCl₃) δ = 7.58 (d, J = 4 Hz, 2H), 7.47 (m, J = 8 Hz, 3H),
7.22 (d, J = 8 Hz, 2H), 6.69 (d, J = 8 Hz, 2H), 5.38 (d, J = 8 Hz, 1H), 4.05 (d, J = 8 Hz, 1H). ¹³C
NMR δ: 50.43, 115.50, 117.98, 125.32, 127.37, 129.57, 129.62, 129.86, 133.61, 143.31.

Table S1. Selected bond distances (Å) and angles (deg) for the complexes $1-5^a$

Complex 1									
Cu(1)-O(6) ⁱ	1.867(2)	Cu(2)-O(1) ⁱⁱ	1.969(2)	Cu(2)-O(2)	2.597(3)				
Cu(1)-O(4)	1.910(2)	Cu(2)-O(1) ⁱⁱⁱ	1.9689(19)	$Cu(2)$ - $Cu(2)^v$	2.9427(5)				
Cu(1)-N(1)	1.974(3)	Cu(2)-O(1)	1.971(2)	Cu(2)- $Cu(2)$ ⁱⁱⁱ	2.9427(5)				
Cu(1)-O(1)	1.997(2)	$Cu(2)-O(1)^{iv}$	1.971(2)	O(1)-Cu(2) ⁱⁱⁱ	1.9689(19)				
Cu(1)-O(2)	2.550(8)	2.550(8)							
$O(6)^{i}-Cu(1)-O(4)$	170.81(11)	O(4)-Cu(1)-O(2)	93.22(8)	$O(1)iii-Cu(2)-O(1)^{iv}$	97.27(9)				
$O(6)^{i}-Cu(1)-N(1)$	92.90(10)	N(1)-Cu(1)-O(2)	97.94(10)	$O(1)-Cu(2)-O(1)^{iv}$	160.23(12)				
O(4)-Cu(1)-N(1)	86.27(10)	O(1)-Cu(1)-O(2)	80.87(9)	$O(1)^{ii}-Cu(2)-O(2)$	91.81(6)				
$O(6)^{i}-Cu(1)-O(1)$	93.16(9)	$O(1)^{ii}-Cu(2)-O(1)^{iii}$	176.37(12)	$O(1)^{iii}-Cu(2)-O(2)$	91.81(6)				
O(4)-Cu(1)-O(1)	87.83(9)	$O(1)^{ii}-Cu(2)-O(1)$	97.27(9)	O(1)-Cu(2)-O(2)	80.11(6)				
N(1)-Cu(1)-O(1)	173.91(9)	$O(1)^{iii}-Cu(2)-O(1)$	83.36(9)	$O(1)^{iv}-Cu(2)-O(2)$	80.11(6)				
$O(6)^{i}$ -Cu(1)-O(2)	95.95(8)	$O(1)^{ii}$ -Cu(2)-O(1) ^{iv}	83.36(9)						
Complex 2									
$Cu(1)-O(3)^{i}$	1.865(2)	Cu(1)-N(1)	1.985(3)	Cu(2)-O(4) ⁱⁱ	1.938(2)				
Cu(1)-O(1)	1.941(2)	Cu(1)-O(7)	2.273(3)	Cu(2)-O(2)	1.981(2)				
Cu(1)-O(8)	1.973(2)	Cu(2)-O(6)	1.871(2)	Cu(2)-N(2) ⁱⁱ	1.982(3)				
$O(3)^{i}-Cu(1)-O(1)$	170.69(11)	N(1)-Cu(1)-O(7)	97.80(10)	O(6)-Cu(2)-O(4) ⁱⁱ	173.41(11)				
$O(3)^{i}-Cu(1)-O(8)$	89.20(10)	O(8)-Cu(1)-N(1)	162.88(11)	O(6)-Cu(2)-O(2)	93.92(10)				
O(1)-Cu(1)-O(8)	89.64(9)	$O(3)^{i}-Cu(1)-O(7)$	96.29(10)	O(4)ii-Cu(2)-O(2)	87.88(10)				
$O(3)^{i}-Cu(1)-N(1)$	92.62(10)	O(1)-Cu(1)-O(7)	93.02(10)	O(6)-Cu(2)-N(2) ⁱⁱ	91.47(10)				
O(1)-Cu(1)-N(1)	85.81(10)	O(8)-Cu(1)-O(7)	98.92(10)	O(4)ii-Cu(2)-N(2) ⁱⁱ	85.62(10)				
O(2)-Cu(2)-N(2) ⁱⁱ	168.11(10)								
		Complex	x 3						
$Cu(1)-O(5)^{i}$	1.861(3)	Cu(1)-N(1)	1.980(3)	Cu(1)-O(2)	2.291(3)				
Cu(1)-O(3)	1.917(3)	Cu(1)-O(1)	2.019(3)						
$O(5)^{i}-Cu(1)-O(3)$	177.36(13)	O(3)-Cu(1)-O(1)	88.75(12)	O(3)-Cu(1)-O(2)	94.61(13)				
$O(5)^{i}-Cu(1)-N(1)$	93.26(11)	N(1)-Cu(1)-O(1)	155.06(13)	N(1)-Cu(1)-O(2)	109.42(12)				
O(3)-Cu(1)-N(1)	86.28(11)	$O(5)^{i}$ -Cu(1)-O(2)	87.99(13)	O(1)-Cu(1)-O(2)	95.32(13)				
$O(5)^{i}$ -Cu(1)-O(1)	90.60(12)								
		Complex	4						
Cu(1)-O(16)	1.9311(19)	Cu(1)-N(2)	2.292(2)	Cu(2)-N(3)	2.044(2)				
Cu(1)-O(14)	1.9635(19)	Cu(2)-O(10)	1.935(2)	Cu(2)-N(1)	2.054(2)				
Cu(1)-N(6)	2.041(2)	Cu(2)-O(20)	1.9605(19)	Cu(2)-N(4)	2.266(2)				
Cu(1)-N(5)	2.058(2)								
O(16)-Cu(1)-O(14)	168.82(9)	N(6)-Cu(1)-N(5)	165.62(9)	O(10)-Cu(2)-O(20)	173.57(9)				
O(16)-Cu(1)-N(6)	88.06(9)	O(16)-Cu(1)-N(2)	113.70(8)	O(10)-Cu(2)-N(3)	88.37(9)				
O(14)-Cu(1)-N(6)	90.96(9)	O(14)-Cu(1)-N(2)	77.34(8)	O(20)-Cu(2)-N(3)	88.46(9)				
O(16)-Cu(1)-N(5)	82.30(8)	N(6)-Cu(1)-N(2)	86.77(9)	O(10)-Cu(2)-N(1)	82.39(8)				
O(14)-Cu(1)-N(5)	96.43(8)	N(5)-Cu(1)-N(2)	106.85(8)	O(20)-Cu(2)-N(1)	98.77(8)				
N(3)-Cu(2)-N(1)	159.23(9)								
Complex 5									
Cu(1)-O(1)	1.893(3)	Cu(1)-N(2)	1.968(3)	Cu(1)-O(8)	2.297(3)				
Cu(1)-O(6)	1.938(3)	Cu(1)-O(7)	1.988(2)						
O(1)-Cu(1)-O(6)	172.32(8)	O(6)-Cu(1)-O(7)	89.31(12)	O(6)-Cu(1)-O(8)	95.48(10)				
O(1)-Cu(1)-N(2)	94.70(11)	N(2)-Cu(1)-O(7)	161.66(8)	N(2)-Cu(1)-O(8)	106.40(12)				
O(6)-Cu(1)-N(2)	83.75(10)	O(1)-Cu(1)-O(8)	92.17(9)	O(7)-Cu(1)-O(8)	91.12(13)				
O(1)-Cu(1)-O(7)	89.91(11)								
^a Symmetry transformations used to generate equivalent atoms for 1: i) $-x + 1/2$, $-y + 1/2$, $-z + 1$. ii) x, $-y + 1$, z									
+ 1/2. iii) $-x, -y, -z$. iv) $-x, y, -z + 1/2$. v) $-x, -y, -z + 1$. for 2 : i) $-x + 1, -y, -z + 1$. ii) $-x + 2, -y + 1, -z$									
+ 1. For 3 : i) – x , – y + 1, – z + 2.									

Table S2. Geometrical Parameters of Hydrogen Bonds (Å, °) for complexes $1\!-\!5$

D-H···A $d(D-H)(\dot{A}) \quad d(H···A)(\dot{A}) \quad d(D···A)(\dot{A}) \quad <(DHA)$ Symmetry codes

			Complex 1		
O1 - H1W…O6	0.82	1.96	2.732(3)	157.1	-x + 1/2, y - 1/2, -z + 1/2
O2-H2W…O5	0.83	1.90	2.723(3)	175.6	-x, y, -z - 1/2
O3-H4W…O3	0.83	1.47	2.282(19)	172.4	-x+1, y, -z+3/2
O3-H3W…O3	0.83	1.88	2.31(2)	110.8	-x+1, -y, -z+1
			Complex 2		
O2-H2w…O4	0.84	2.03	2.861(3)	172.0	-x+2, y-1/2, -z+3/2
O8-H4w…O5	0.84	1.88	2.689(3)	162.1	-x+2, y-3/2, -z+3/2
O8-H3w…O6	0.82	1.93	2.731(3)	165.9	x, y - 1, z
O7-H1w…O3	0.82	2.04	2.855(3)	169.3	-x+1, -y+1, -z+1
			Complex 3		
O2-H4w…O4	0.83	1.95	2.749(4)	164.4	x - 1, y, z
O2-H3w…O3	0.82	1.99	2.800(4)	168.8	-x, -y, -z+1
O1-H2w…O5	0.83	2.29	2.828(4)	122.8	<i>x</i> , <i>y</i> , <i>z</i> – 1
O1-H2w…O2	0.83	2.18	2.950(5)	155.5	-x, -y+1, -z+1
O1 - H1w…O1	0.83	2.43	3.004(6)	127.5	-x+1, -y+1, -z+1
			Complex 4		
O1-H1w…O21	0.83	1.93	2.759(4)	175.8	
O1 - H2w…O17	0.83	2.26	2.890(3)	132.8	x - 1, y, z
O2-H3w…O3	0.83	2.13	2.811(4)	139.0	
O2-H4w…O9	0.81	2.26	2.905(6)	136.5	-x+1, -y+1, -z
O2-H4w…O8	0.81	2.57	3.182(6)	132.6	-x+1, -y+1, -z
O3-H5w…O1	0.84	2.13	2.921(4)	156.9	
O3-H6w…O11	0.84	2.02	2.801(3)	154.5	x - 1, y, z
O4-H7w…O7	0.83	1.95	2.757(4)	164.9	-x+1, -y+1, -z+1
O4-H8w…O21	0.83	2.28	3.060(4)	157.0	
O5-H9w…O4	0.83	2.06	2.850(4)	158.6	
O5-H10w…O9	0.85	1.89	2.745(5)	179.7	x - 1, y, z
O6-H11w…O20	0.83	2.55	3.267(3)	145.4	
O6-H12w…O1	0.83	2.14	2.886(4)	149.4	
O7-H13w…O15	0.84	2.01	2.797(4)	155.9	-x+1, -y+1, -z+1
07 - H14w…O4	0.84	2.30	2.757(4)	115.0	-x+1, -y+1, -z+1
O8-H15w…O15	0.84	2.02	2.794(4)	152.8	· · ·
O8-H16w…O7	0.85	1.87	2.720(5)	179.0	x, y - 1, z - 1
O9-H17w…O14	0.82	2.32	3.014(5)	141.9	
O9-H18w…O8	0.85	2.36	3.212(6)	179.5	
		-	Complex 5		
O4-H4…N1	0.82	1.78	2.514(4)	147.6	
07-H1w…O1	0.83	1.89	2.706(4)	165.2	$-x_{2}-v+2_{3}-z+1$
O7-H2w…O8	0.82	2.03	2.833(4)	164.5	x = 1, v, z
O8-H4w…O6	0.82	1.98	2.703(4)	145.8	x + 1, v, z
O8-H3w…O5	0.82	1.91	2.721(4)	172.2	$-x_{1} - y + 1_{1} - z + 1_{1}$
02-H1'···03	0.88(6)	1 73(6)	2.607(4)	176(6)	-x+3-y+2-z
00	0.00(0)			-, -(-)	····, , ···, ··

The ¹H and ¹³C NMR spectra

