# **Supplementary Information**

# Relations between compression and thermal contraction in 1,2,4-trichlorobenzene and melting of trichlorobenzene isomers

Maciej Bujaka,\*, Marcin Podsiadłob and Andrzej Katrusiakb,\*

<sup>a</sup>Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland; \*E-mail: mbujak@uni.opole.pl; Tel: +48(77)452-7159; <sup>b</sup>Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland; \*E-mail: katran@amu.edu.pl; Tel: +48(61)829-1590

# Experimental

# In-situ low-temperature and high-pressure crystal growth

The commercially available 1,2,4-trichlorobenzene (99%, purum, Acros Organics), distilled at reduced pressure, was used for the low-temperature and high-pressure single-crystal X-ray diffraction and compressibility measurements. It was isobarically frozen in a glass capillary (the internal diameter of 0.3 mm and the wall 0.01 mm thick). The liquid sample, filling *ca*. 0.5 mm of the sealed capillary, was cooled in a nitrogen gas stream from an Oxford Cryosystems attachment. At *ca*. 250 K the 124TCB sample froze as a polycrystalline material, which then was warmed to *ca*. 283 K, and the single crystal was grown by temperature cycling, at a rate of 1-2 K·min<sup>-1</sup>, close to the melting point of 290.07 K [D. R. Lide, ed., *CRC Handbook of Chemistry and Physics*, Internet Version 2007, (87th Edition), Taylor and Francis, Boca Raton, FL, 2007]. This gradually reduced the number of crystal grains left in each cycle (Figure S1). The single-crystal X-ray intensity data were collected at 270.0(1) K, and then the same crystal sample was cooled down and the diffraction data at 100.0(1) K were measured.

A modified Merrill-Bassett diamond-anvil cell, DAC [L. Merrill, W. A. Bassett, *Rev. Sci. Instrum.*, 1974, **45**, 290–294; W. A. Bassett, *High Press. Res.*, 2009, **29**, 163–186] was used for the high-pressure freezing of 124TCB. A general experimental procedure for the high-pressure crystallization was previously reported (Figure S2, [R. Fourme, *J. Appl. Crystallogr.* 1968, **1**, 23–30; W. L. Vos, L. W. Finger, R. J. Hemley, H. Mao, *Phys. Rev. Lett.* 1993, **71**, 3150–3153; D. R. Allan, S. J. Clark, M. J. P. Brugmans, G. J. Ackland, W. L. Vos, *Phys. Rev. B, Condens. Mat.* 1998, **58**, R11809– R11812; M. Bujak, A. Budzianowski, A. Katrusiak, *Z. Kristallogr.* 2004, **219**, 573–579]). The diameter of the diamond culets was 0.8 mm. The gasket was made of 0.3 mm thick steel foil, with a 0.50 mm in diameter hole, spark-eroded and pre-indented to *ca.* 0.36 mm [A. Katrusiak, *J. Appl. Crystallogr.* 1999, **32**, 1021–1023]. The first data set was collected at 0.16(5) GPa. Then the pressure was increased and the new single crystal of 124TCB was grown. The second data set was collected at 0.64(5) GPa in an analogous way. The ruby-fluorescence method, using a BETSA PRL spectrometer, was utilized to measure the pressure in the DAC [J. D. Barnett, S. Block, G. J. Piermarini, *Rev. Sci. Instrum.* 1973, 44, 1–9; G. J. Piermarini, S. Block, J. D. Barnett, R. A. Forman, *J. Appl. Phys.* 1975, 46, 2774–2780] with the accuracy of 0.05 GPa.

#### Data collection, data reduction, structure solution and refinement

The low-temperature ambient-pressure (0.1 MPa) and room-temperature (295 K) high-pressure diffraction data were collected on Xcalibur Eos and KUMA KM4-CCD diffractometers, respectively, both with the graphite-monochromated MoK $\alpha$  radiation. At 270.0(1) and 100.0(1) K the reflections were measured using the 10 s exposure time and  $\omega$ -scan technique with  $\Delta \omega = 1$  and 0.75°, respectively. The pressure-frozen single crystals of 124TCB were centred on a diffractometer using the shadow method [A. Budzianowski, A. Katrusiak, in High-Pressure Crystallography, eds. A. Katrusiak, P. F. McMillan, Dordrecht: Kluwer Academic Publishers, 2004, pp. 101-112]. The room-temperature highpressure intensity data, at 0.16(5) and 0.64(5) GPa, were collected using the  $\varphi$ - and  $\omega$ -scan techniques with  $\Delta \omega / \Delta \varphi = 0.75^{\circ}$  and 50 s and 29 s exposures, respectively. All data were accounted for the Lorentz, polarization and sample absorption effects [Agilent Technologies, 2010, CrysAlis Pro, version 171.35.4] and the high-pressure data additionally for the absorption of X-rays by the DAC and shadowing of the single crystal by the gasket edges [A. Katrusiak, REDSHABS, 2003, Program for correcting reflections intensities for DAC absorption, gasket shadowing and the sample-crystal absorption. Adam Mickiewicz University, Poznań, Poland; A. Katrusiak, Z. Kristallogr. 2004, 219, 461–467]. The structures were solved by direct methods and refined with SHELX-97 [G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112–122]. The Cl atoms were refined with anisotropic displacement parameters. The C atoms were refined with anisotropic displacement parameters in the low-temperature and isotropically in the high-pressure structures. The H atoms were located in subsequent difference Fourier maps and isotropically refined using the riding model with constrained C–H distances and  $U_{eq}$ 's equal to 1.2 times U<sub>eq</sub>'s of the corresponding C atoms. The CrysAlis CCD and CrysAlis Pro programs [Oxford Diffraction, 2009, CrysAlis CCD, version 1.171.33.36d; Agilent Technologies, 2010, CrysAlis Pro, version 171.35.4] were used for the data collection, unit-cell refinement and data reductions (initial reduction of the high-pressure intensity data). The 124TCB crystal data and structure determination summary are listed in Table S1. The bond lengths, angles and the shortest intra- and intermolecular distances are presented in Tables S2 and S3. The compressed intermolecular contacts have been compared using the Hirshfeld-surface analyses together with the two-dimensional fingerprint plots, provided by Crystal Explorer [S. K. Wolff, D. J. Grimwood, J. J. McKinnon, D. Jayatilaka, M. A. Spackman, 2007, CrystalExplorer 2.0 (r 313). University of Western Australia; J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Acta Crystallogr. 2004, B60, 627-668; M. A. Spackman, J. J. McKinnon, D. Jayatilaka, CrystEngComm 2008, 10 377-388; M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11 19–32]. The structure drawings were prepared using Mercury [C. F. Macrae,

I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, *J. Appl. Cryst.* 2008, **41** 466–470].

### **Compressibility measurement**

The room-temperature, at 295(2) K, compressibility measurement, between ambient pressure and 1 GPa, was performed in the piston-and-cylinder apparatus [K. Dziubek, A. Katrusiak, *Z. Kristallogr*. 2014, **229**, 129–134]. The pressure was increased in *ca*. 20 MPa steps.

#### **Results and discussion**

The aromatic rings are essentially planar, with the maximum deviation of the C-atoms from this plane of 0.016(4) Å at 270 K/0.1 MPa. The Cl-atoms do not deviate significantly from the planes defined by the C-atoms. The maximum deviation of 0.090(19) Å was found for the Cl14 atom at 295 K/0.64 GPa. The principal geometrical features of the 124TCB molecules remain, within the limit of 3 esd's, essentially constant at both studied temperatures and are, in general, regular for the aromatic C–C, and C–Cl and C–H bonds and corresponding valence and torsion angles (Table S2). The bond distances and valence angles are also comparable with the previous results obtained by means of electron diffraction [R. Schoppe, *Z. Phys. Chem. (Leipzig)* 1936, **34**, 461–470] and similar to those observed in benzene and its chloro derivatives [A. Budzianowski, A. Katrusiak, *Acta Crystallogr.* 2006, **B62**, 94–101; D. Andre, R. Fourme, M. Renaud, *Acta Crystallogr.* 1971, **B27**, 2371–2380; R. Boese, M. T. Kirchner, J. D. Dunitz, G. Filippini, A. Gavezzotti, *Helv. Chim. Acta* 2001, **84**, 1561–1577; M. Bujak, K. Dziubek, A. Katrusiak, *Acta Crystallogr.* 2007, **B63**, 124–131]. They are also in agreement with the values found in the other crystals that contain 124TCB molecules [*e.g.* J. W. Buchler, A. De Cian, J. Fischer, M. Kihn-Botulinski, H. Paulus, R. Weiss, *J. Am. Chem. Soc.* 1986, **108**, 3652–3659].

The intramolecular Cl···Cl distances between vicinal Cl11 (Cl21) and Cl12 (Cl22) chlorines, with the shortest 3.155(3) Å at 270 K/0.1 MPa, are shorter than the sum of van der Waals radii for those atoms (Table S3) [A. Bondi, *J. Phys. Chem.* 1964, **68**, 441–451] and thus indicative of a certain amount of steric crowding. The data show that this crowding is relieved rather through the changes of Cl–C–C angles, than the Cl–C and C–C bonds elongation. At both temperatures the Cl11–C11–C12 (Cl21–C21–C22) and Cl12–C12–C11 (Cl22–C22–C21) angles are larger than 120° (average 121.2° at 100 K/0.1 MPa) whereas, the adjacent Cl11–C11–C16 (and C21–C21–C16) and Cl12–C12–C13 (and Cl22–C22–C23) angles are compressed to 118.7° on average at 100 K/0.1 MPa (Table S2). The remaining Cl–C–C angles are equal within the experimental limits. Circling the ring, the endocyclic C–C–C angles (120° on average) show small alternations with the largest difference of 4.6(7)° at 270 K/0.1 MPa. Such differences are comparable to those found in the low-temperature structure of 123TCB isomer where the steric effects of chlorines are more prominent [A. J. Blake, R. Blom, S. Cradock, S. L. Davidson, D. W. H. Rankin, *J. Mol. Struct.* 1990, **240**, 95–110].

Decreasing temperature and increasing pressure, in general, decreases intermolecular distances, and increases density which affects the Hirshfeld surfaces and the fingerprint plots (Figures S4 and S5). The observation that more of the intermolecular contacts are formed at lower temperatures and higher pressures is consistent with results observed in other studies on chloro- compounds [*e.g.* M. Bujak, M. Podsiadło, A. Katrusiak, *J. Phys. Chem. B* 2008, **112**, 1184–1188].

The fingerprint plots illustrate that intermolecular contacts for two symmetry-independent 124TCB molecules are somewhat different, especially in the case of H…H interactions, that are almost absent for the second (C21-C26) molecule. On decreasing temperature and increasing pressure the fingerprint plots look much the same, since no drastic structural changes, *e.g.* a change associated with a phase transition, is encountered over the studied temperature and pressure range. The finding that increasing density is observed manifests itself in the progressive slightly compact plots and their movement to lower  $d_e$  and  $d_i$  values on decreasing temperature and increasing pressure. Furthermore, as referred above, the increasing importance of the Cl…Cl and Cl…H interactions, at low temperature and at high pressure is particularly apparent - these two types of interactions becoming more prominent at 100 K/0.1 MPa and 295 K/0.64 GPa.

All the Cl···Cl and Cl···H intermolecular contacts are important for the packing mode and molecular association in the crystals and suggest that specific interactions exist between 124TCB molecules. Those contacts could be classified as type II and somewhat distorted type II interaction ( $\theta_1$  and  $\theta_2$  angles are not so far from 90 and 180° (Table S3; [G. R. Desiraju, R. Parthasarathy, *J. Am. Chem. Soc.* 1989, **111**, 8725–8726; V. R. Pedireddi, D. S. Reddy, B. S. Goud, D. C. Craig, A. D. Rae, G. R. Desiraju, *J. Chem. Soc. Perkin Trans* 2 1994, 2353–2360; L. Brammer, E. A. Bruton, P. Sherwood, *Cryst. Growth Des.* 2001, **1**, 277–290; M. Fourmigué, *Curr. Opin. Solid State Mater. Sci.* 2009, **13**, 36–45; F. F. Awwadi, R. D. Willett, K. A. Peterson, B. Twamley, *Chem. Eur. J.* 2006, **12**, 8952–8960]).

It is characteristic that the Cl···H contacts are compressed more than contacts Cl···Cl (Figure 7). The same trend, but at a smaller rate is observed on reducing temperature. Most interestingly, the shortest Cl21···Cl24<sup>III</sup> contact in 124TCB increases from 3.499(2) Å at 270 K/0.1 MPa to 3.539(13) Å at 295 K/0.16 GPa; and from 3.423(1) Å at 100 K/0.1 MPa to 3.440(17) Å and 295 K/0.64 GPa. This can be an indication of decreasing importance of Cl21···Cl24 interactions with pressure, which is consistent with the recently observed replacement of Br···Br contacts by contacts C–H···Br in high-pressure phase of CH<sub>3</sub>Br [M. Podsiadło, A. Olejniczak, A. Katrusiak, *CrystEngComm*. 2014, **16**, 8279–8285]. The C–H···Cl contacts in 124TCB behave differently. The shortest Cl21···H25<sup>VI</sup> distance of 3.002 Å at 270 K/0.1 MPa increases to 3.132 Å at 295 K/0.16 GPa, however it is practically identical at 100 K/0.1 MPa and 295 K/0.64 GPa, of 2.960 Å and 2.959 Å, respectively. Thus the Cl···Cl and H···Cl contacts are pressure and temperature

dependent at a different rate, and pressure differentiates the contacts more pronouncedly than temperature (Figure 7).

Since all the trichlorobenzene isomers form ordered crystals built form molecules that do not show the conformational freedom, the differences in their properties are mainly related to the enthalpy component [A. Gavezzotti, *J. Chem. Soc., Perkin Trans. 2* 1995, 1399–1404] and could be explained by the shape/symmetry of molecules and different-packing efficiency, which in turn, depends on the formed intermolecular interactions. All these mentioned factors are more favourable for the highest-melting highest-symmetrical 135TCB: (i) the electronegative chlorine atoms are in the perfect geometrical positions – they are bonded to every second carbon atom; (ii) owing to the distant location the chlorine atoms do not interfere with each other and the sterical hindrances are minimized; (iii) the 1,3,5-location of substituents requires slightly more space for each molecule, but at the same time it secures a free access to the chlorine atoms increasing the possibility of potential intermolecular interactions.

The differences in molecular packing patterns and intermolecular interactions between the trichlorobenzene isomers are presented on the two-dimensional fingerprint plots (Figure S5). The area coverage and the density of points on the fingerprint plots facilitate the analysis of the specific types of interactions and confirms that 124TCB molecules, in general, are engaged in less interactions (absence of  $H \cdots H$  in one of two symmetry-independent molecules), which is additionally reflected in the lowest packing coefficient (Table 2). The highest melting point of 135TCB corresponds well to the Cl $\cdots$ Cl interactions being more pronounced in that structure than in two other isomers.



Figure S1. The isobarically frozen, in a glass capillary, 124TCB at 270 K/0.1 MPa.



**Figure S2.** Stages of isochoric growth of the 124TCB single crystal in a diamond-anvil cell leading to the sample fully filling the high-pressure chamber (0.42 mm in diameter) at 295 K/0.16 GPa. The small ruby chip, for pressure calibration, is located at the top edge of the high-pressure chamber.



**Figure S3.** Relative changes in unit-cell parameters of 124TCB at isobaric (left), pseudo-isochoric (center) and isothermal (right) transformations region. The parameters have been related to the average dimensions between 270 K/0.1 MPa and 295 K/0.16 GPa.



**Figure S4.** The two-dimensional fingerprint plots for two symmetry-independent trichlorobenzene molecules (the upper plot corresponds to the first C11-C16 molecule, whereas the lower one to the second C21-C26 molecule) in the high-pressure structures of 124TCB at: (a) 295 K/0.16 GPa and (b) 295 K/0.64 GPa.



С

**Figure S5.** Two-dimensional fingerprint plots for the ambient-pressure structures of: (a) 123TCB at 298 K (the upper plot corresponds to the first C1-C11 molecule, whereas the lower one to the second C2-C12 symmetry-independent molecule); (b), (c) 124TCB at 270 and 100 K (the upper plot corresponds to the first C11-C16 molecule, whereas the lower one to the second C21-C26 symmetry-independent molecule), and (d) 135TCB at 293 K, respectively.



**Figure S6.** The intermolecular Cl···Cl contacts in the low-temperature structure of 124TCB at 100 K/0.1 MPa, denoted by the red lines, formed by two symmetry-independent 124TCB molecules. Displacement ellipsoids are plotted at the 25% probability level. Symmetry codes: (I) 3/2 - x, -1/2 + y, 1/2 - z; (II) 1/2 + x, 1/2 - y, 1/2 + z; (III) 1/2 + x, 1/2 - y, -1/2 + z; (IV) -1/2 + x, 1/2 - y, -1/2 + z; (V) 3/2 - x, 1/2 + y, 1/2 - z; (VI) -1/2 + x, 1/2 - y, 1/2 + z.

| Table S1. The 124TCB crystal data and structure determination summary | y. |
|-----------------------------------------------------------------------|----|
|-----------------------------------------------------------------------|----|

| temperature                                                                                                                                                                                                                         | 270.0(1) K                                    | 100.0(1) K                                    | 295(2) K                                      | 295(2) K                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| pressure                                                                                                                                                                                                                            | 0.1 MPa                                       | 0.1 MPa                                       | 0.16(5) GPa                                   | 0.64(5) GPa                                   |
| formula                                                                                                                                                                                                                             | C <sub>6</sub> H <sub>3</sub> Cl <sub>3</sub> |
| fw, g/mol                                                                                                                                                                                                                           | 181.43                                        | 181.43                                        | 181.43                                        | 181.43                                        |
| crystal size, mm                                                                                                                                                                                                                    | 0.3 x 0.1 x 0.1                               | 0.3 x 0.1 x 0.1                               | 0.42 x 0.42 x 0.24                            | 0.40 x 0.40 x 0.24                            |
| crystal system                                                                                                                                                                                                                      | monoclinic                                    | monoclinic                                    | monoclinic                                    | monoclinic                                    |
| space group                                                                                                                                                                                                                         | $P2_1/n$                                      | $P2_1/n$                                      | $P2_1/n$                                      | $P2_1/n$                                      |
| Ζ, Ζ'                                                                                                                                                                                                                               | 8, 2                                          | 8, 2                                          | 8, 2                                          | 8, 2                                          |
| a, Å                                                                                                                                                                                                                                | 3.8788(5)                                     | 3.7998(4)                                     | 3.8459(5)                                     | 3.7825(7)                                     |
| <i>b,</i> Å                                                                                                                                                                                                                         | 26.948(3)                                     | 26.683(3)                                     | 26.658(3)                                     | 26.378(3)                                     |
| <i>c</i> , Å                                                                                                                                                                                                                        | 13.6006(13)                                   | 13.4964(13)                                   | 14.03(4)                                      | 13.71(4)                                      |
| β, °                                                                                                                                                                                                                                | 93.164(9)                                     | 92.665(9)                                     | 93.63(5)                                      | 93.76(6)                                      |
| V, Å <sup>3</sup>                                                                                                                                                                                                                   | 1419.5(3)                                     | 1366.9(2)                                     | 1436(4)                                       | 1365(4)                                       |
| $\rho$ , g/cm <sup>3</sup>                                                                                                                                                                                                          | 1.698                                         | 1.763                                         | 1.678                                         | 1.766                                         |
| $\mu$ , mm <sup>-1</sup>                                                                                                                                                                                                            | 1.186                                         | 1.232                                         | 1.173                                         | 1.234                                         |
| $\theta$ range, °                                                                                                                                                                                                                   | 3.00 - 25.00                                  | 3.02 - 25.00                                  | 3.06 - 24.91                                  | 3.09 - 24.94                                  |
| index ranges                                                                                                                                                                                                                        | $-4 \le h \le 4$                              |
|                                                                                                                                                                                                                                     | $-32 \le k \le 32$                            | $-31 \le k \le 31$                            | $-31 \le k \le 31$                            | $-31 \le k \le 31$                            |
|                                                                                                                                                                                                                                     | $-16 \le l \le 16$                            | $-15 \le l \le 16$                            | $-3 \le l \le 3$                              | $-3 \le l \le 3$                              |
| reflns collected                                                                                                                                                                                                                    | 28754                                         | 10317                                         | 7085                                          | 6941                                          |
| R <sub>int</sub>                                                                                                                                                                                                                    | 0.1340                                        | 0.0581                                        | 0.1144                                        | 0.1388                                        |
| data $[I > 2\sigma(I)]$                                                                                                                                                                                                             | 1793                                          | 2053                                          | 404                                           | 434                                           |
| data/parameters                                                                                                                                                                                                                     | 2503/163                                      | 2419/163                                      | 540/103                                       | 528/103                                       |
| GOF on $F^2$                                                                                                                                                                                                                        | 1.091                                         | 1.131                                         | 1.134                                         | 1.446                                         |
| $R_I [I > 2\sigma(I)]$                                                                                                                                                                                                              | 0.0756                                        | 0.0428                                        | 0.0601                                        | 0.1112                                        |
| $R_1$ (all data) <sup>a</sup>                                                                                                                                                                                                       | 0.1023                                        | 0.0532                                        | 0.0823                                        | 0.1279                                        |
| $wR_2$ (all data) <sup>a</sup>                                                                                                                                                                                                      | 0.2322                                        | 0.1208                                        | 0.1895                                        | 0.3072                                        |
| lrgst diff peak, e/Å <sup>3</sup>                                                                                                                                                                                                   | 0.773                                         | 0.504                                         | 0.266                                         | 0.560                                         |
| lrgst diff hole, e/Å <sup>3</sup>                                                                                                                                                                                                   | -0.541                                        | -0.451                                        | -0.264                                        | -0.528                                        |
| $aR_{I} = \Sigma   F_{0}  -  F_{c}   / \Sigma  F_{0} ; wR_{2} = \{\Sigma   w(F_{0}^{2} - F_{c}^{2})^{2}  / \Sigma   w(F_{0}^{2})^{2} \}^{1/2}; w = 1/[\sigma^{2}(F_{0}^{2}) + (aP)^{2} + bP], where P = (F_{0}^{2} + 2F_{c}^{2})/3$ |                                               |                                               |                                               |                                               |

| Atoms; Temperature/Pressure          | 270 K/0.1 MPa  | 100 K/0.1 MPa | 295 K/0.16 GPa | 295 K/0.64 GPa |
|--------------------------------------|----------------|---------------|----------------|----------------|
| Cl11-C11                             | 1.720(6)       | 1.725(3)      | 1.78(2)        | 1.78(3)        |
| Cl12–C12                             | 1.736(6)       | 1.737(3)      | 1.745(16)      | 1.71(2)        |
| Cl14-C14                             | 1 733(6)       | 1 737(3)      | 1 74(2)        | 1 75(3)        |
| C11-C12                              | 1 369(8)       | 1 383(5)      | 1 347(16)      | 1 367(19)      |
| C11–C16                              | 1.393(8)       | 1.389(5)      | 1.354(17)      | 1.36(2)        |
| C12–C13                              | 1 375(8)       | 1 379(5)      | 1 350(15)      | 1 370(19)      |
| C13-C14                              | 1 374(8)       | 1 383(5)      | 1 346(13)      | 1 367(17)      |
| C14-C15                              | 1 376(8)       | 1 382(5)      | 1 348(15)      | 1 365(19)      |
| C15-C16                              | 1 386(8)       | 1 384(5)      | 1 349(14)      | 1 363(18)      |
| C 21-C21                             | 1 734(6)       | 1 737(3)      | 1 68(3)        | 1 77(5)        |
| C 22-C22                             | 1 723(5)       | 1 724(3)      | 1 76(3)        | 1.83(5)        |
| Cl24–C24                             | 1.730(5)       | 1.738(3)      | 1.79(3)        | 1.76(3)        |
| C21–C22                              | 1.394(8)       | 1.390(5)      | 1.368(14)      | 1.355(16)      |
| C21–C26                              | 1.367(7)       | 1.379(5)      | 1.45(5)        | 1.46(7)        |
| C22–C23                              | 1.386(8)       | 1.396(5)      | 1.374(18)      | 1.355(17)      |
| C23–C24                              | 1.392(7)       | 1.385(5)      | 1.372(19)      | 1.354(17)      |
| C24–C25                              | 1.363(8)       | 1.379(5)      | 1.371(13)      | 1.357(16)      |
| C25–C26                              | 1.398(8)       | 1.389(5)      | 1.372(19)      | 1.355(17)      |
| Cl11-C11-C12                         | 122.3(5)       | 121.3(3)      | 123.9(10)      | 121.6(11)      |
| Cl11–C11–C16                         | 118.6(4)       | 119.2(3)      | 119.7(19)      | 116(2)         |
| Cl12-C12-C11                         | 120.0(5)       | 120.6(3)      | 121.8(11)      | 122.0(13)      |
| Cl12-C12-C13                         | 119.3(4)       | 118.7(3)      | 116.6(15)      | 119.6(18)      |
| Cl14-C14-C13                         | 119.0(4)       | 118.9(3)      | 121.0(18)      | 118(2)         |
| Cl14-C14-C15                         | 119.5(5)       | 119.6(3)      | 120.6(8)       | 120.8(10)      |
| C11-C12-C13                          | 120.7(5)       | 120.6(3)      | 121.5(15)      | 117.9(18)      |
| C11–C16–C15                          | 120.9(5)       | 120.6(3)      | 123(2)         | 119(3)         |
| C12-C11-C16                          | 119.1(5)       | 119.5(3)      | 116.3(17)      | 122(2)         |
| C12-C13-C14                          | 119.6(5)       | 119.1(3)      | 121(2)         | 120(3)         |
| C13-C14-C15                          | 121.5(5)       | 121.5(3)      | 118.3(17)      | 121(2)         |
| C14-C15-C16                          | 118.2(5)       | 118.7(3)      | 119.6(15)      | 119.4(18)      |
| Cl21–C21–C22                         | 120.9(4)       | 120.7(3)      | 126(3)         | 122(4)         |
| Cl21–C21–C26                         | 119.0(4)       | 118.4(3)      | 120.7(9)       | 121.9(11)      |
| Cl22–C22–C21                         | 121.8(4)       | 122.2(3)      | 117(3)         | 119(4)         |
| Cl22–C22–C23                         | 117.9(4)       | 118.3(3)      | 120.1(12)      | 119.2(12)      |
| Cl24–C24–C23                         | 118.1(4)       | 118.7(3)      | 121.9(8)       | 118.5(11)      |
| Cl24–C24–C25                         | 119.4(4)       | 119.1(3)      | 116.2(19)      | 117(2)         |
| C21–C22–C23                          | 120.4(5)       | 119.6(3)      | 123(3)         | 122(4)         |
| C21–C26–C25                          | 120.5(5)       | 120.0(3)      | 125.4(13)      | 121.9(17)      |
| C22-C21-C26                          | 120.1(5)       | 120.9(3)      | 113(3)         | 116(4)         |
| C22-C23-C24                          | 117.9(5)       | 118.5(3)      | 120.7(15)      | 119.1(17)      |
| C23–C24–C25                          | 122.5(5)       | 122.2(3)      | 121.7(17)      | 124(2)         |
| C24–C25–C26                          | 118.5(5)       | 118.8(3)      | 116.0(19)      | 116(2)         |
| Cl11-C11-C12-Cl12                    | -0.9(7)        | -2.9(4)       | -5.9(17)       | -11.1(16)      |
| Cl11-C11-C12-C13                     | 179.8(4)       | 178.8(3)      | 177.2(7)       | 177.1(9)       |
| Cl11-C11-C16-C15                     | -179.7(5)      | -178.9(3)     | -177.2(9)      | -177.1(9)      |
| Cl12-C12-C13-C14                     | -178.9(4)      | -178.2(2)     | -178.4(8)      | -178.8(9)      |
| Cl14-C14-C15-C16                     | -178.6(4)      | -178.9(2)     | -177.0(7)      | -177.7(9)      |
| C11-C12-C13-C14                      | 0.4(9)         | 0.1(5)        | -1.4(16)       | -6.7(16)       |
| C12-C11-C16-C15                      | 2.1(8)         | 0.3(5)        | -1.1(16)       | -6.8(16)       |
| C12-C13-C14-Cl14                     | 178.6(4)       | 178.8(3)      | 177.2(8)       | 178.5(9)       |
| C12-C13-C14-C15                      | 1.4(9)         | 0.4(5)        | 1.2(15)        | 5.8(17)        |
| C13-C14-C15-C16                      | -1.4(9)        | -0.5(5)       | -1.0(17)       | -5.2(19)       |
| C14-C15-C16-C11                      | -0.4(9)        | 0.2(5)        | 1.0(16)        | 5.6(18)        |
| C16-C11-C12-Cl12                     | 177.2(4)       | 177.9(3)      | 178.2(6)       | 179.1(10)      |
| C16-C11-C12-C13                      | -2.1(8)        | -0.4(5)       | 1.3(17)        | 7.3(17)        |
| Cl21–C21–C22–Cl22                    | 0.6(7)         | 0.1(4)        | 0.2(16)        | 2.2(19)        |
| Cl21–C21–C22–C23                     | -179.1(4)      | 179.9(2)      | 179.4(9)       | -178.8(10)     |
| Cl21–C21–C26–C25                     | 179.6(5)       | -179.3(3)     | -179.0(7)      | -179.6(10)     |
| Cl22-C22-C23-C24                     | 178.5(4)       | 179.1(2)      | -179.6(10)     | -179.8(12)     |
| CI24–C24–C25–C26                     | 178.4(4)       | 178.8(2)      | 178.2(7)       | 179.3(10)      |
| C21–C22–C23–C24                      | -1.8(8)        | -0.7(5)       | 1.2(17)        | 1(2)           |
| C22–C21–C26–C25                      | 0.4(8)         | 1.1(5)        | 1.1(18)        | 4(2)           |
| C22-C23-C24-C124                     | -177.9(4)      | -1/8.1(2)     | -177.7(7)      | -177.8(9)      |
| C22-C23-C24-C25                      | <i>5.2</i> (8) | 1.2(5)        | -2.0(16)       | -2(2)          |
| C23-C24-C25-C26                      | -2.8(8)        | -0.5(5)       | 2.2(14)        | 3.0(19)        |
| C24-C25-C26-C21                      | 0.9(8)         | -0.6(5)       | -1.8(16)       | -4.2(18)       |
| $C_{20} - C_{21} - C_{22} - C_{122}$ | 1/9.8(4)       | 1/9.8(2)      | 180.0(10)      | 1/8./(15)      |
| 020-021-022-023                      | 0.0(8)         | -0.4(3)       | -0./(18)       | -2(2)          |

Table S2. The molecular dimensions (Å, °) of 124TCB at 270 K/0.1 MPa, 100 K/0.1 MPa, 295 K/0.16 GPa

and 295 K/0.64 GPa.

| Atoma: Tomporature/Draggura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 270 K/0 1 MDa                    | 100 K/0 1 MDa              | 205 V/0 16 CDa                  | 205 V/0 64 CDa                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|---------------------------------|-------------------------------------------|
| Cl11Cl12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/0 K/0.1 MPa                    | 3 167(1)                   | 295 K/0.10 GPa                  | <u>293 K/0.04 GPa</u><br><u>3 220(28)</u> |
| $C11-C111\cdots C112$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58 6(2)                          | 59.0(1)                    | 56 1(8)                         | 56 7(9)                                   |
| $C_{111} \cdots C_{112} = C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59.1(2)                          | 59.0(1)                    | 58.0(8)                         | 59(1)                                     |
| $C_{11} = C_{111} = C_{112} = C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.4(3)                          | -1.3(2)                    | -25(7)                          | -4.7(6)                                   |
| Cl12····Cl11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 155(3)                         | 3 167(1)                   | 3.264(22)                       | 3 220(28)                                 |
| $C12-C112\cdots C111$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59 1(2)                          | 59 0(1)                    | 58 0(8)                         | 59(1)                                     |
| $C_{112} \cdots C_{111} = C_{111}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58 6(2)                          | 59.0(1)                    | 56 1(8)                         | 56 7(9)                                   |
| $C_{12} = C_{112} = C_{111} = C_{111}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.4(3)                          | -13(2)                     | -2.5(7)                         | -47(6)                                    |
| <u>Cl21Cl22</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 192(2)                         | 3 196(1)                   | 3 159(6)                        | 3 171(7)                                  |
| $C_{21}$ - $C_{121}$ ···C_{122}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58 7(2)                          | 58 7(1)                    | 58(1)                           | 60(1)                                     |
| $C 2 \cdots C 22-C22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58 7(2)                          | 58.4(1)                    | 59 1(5)                         | 59 5(6)                                   |
| $C_{21} = C_{121} = C_{122} = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3(3)                           | 0.1(2)                     | 0 1(7)                          | 0.9(8)                                    |
| Cl22Cl21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.192(2)                         | 3 196(1)                   | 3 159(6)                        | 3 171(7)                                  |
| $C_{22} = C_{122} \cdots C_{121}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58 7(2)                          | 58 4(1)                    | 59 1(5)                         | 59 5(6)                                   |
| $C 22\cdots C 21-C21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58 7(2)                          | 58 7(1)                    | 58(1)                           | 60(1)                                     |
| $C_{22} = C_{122} = C_{121} = C_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3(3)                           | 0.1(2)                     | 0 1(7)                          | 0.9(8)                                    |
| Cl11Cl24 <sup>I</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 541(2)                         | 3 461(1)                   | 3 547(11)                       | 3 486(16)                                 |
| $C11-C111\cdots C124^{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 166 0(2)                         | 166 9(1)                   | 166 4(7)                        | 167 5(7)                                  |
| $C_{111} \cdots C_{124} C_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88 1(2)                          | 86 9(1)                    | 84 7(6)                         | 86 0(8)                                   |
| $C_{11} = C_{111} = C_{124I} = C_{24I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85 2(9)                          | 89 2(6)                    | 76(3)                           | 77(4)                                     |
| $Cl24\cdots Cl11^{II}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3541(2)                          | 3461(1)                    | 3 547(11)                       | 3 486(16)                                 |
| $C_{24} = C_{124} + C_{111} + C_{111}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88 1(2)                          | 86 9(1)                    | 84 7(6)                         | 86 0(8)                                   |
| $C_{124} \cdots C_{111} = C_{111} = C_{111}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 166.0(2)                         | 166 9(1)                   | 166 4(7)                        | 167 5(7)                                  |
| $C_{24} = C_{124} + C_{111} + C_{11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85 2(9)                          | 89 2(6)                    | 76(3)                           | 77(4)                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 /00(2)                         | 3 423(1)                   | 3 539(13)                       | $\frac{7}{3}$ $\frac{1}{40}(17)$          |
| $C_{121} C_{124}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 177.6(2)                         | 177.9(1)                   | 177 9(5)                        | 176 1(8)                                  |
| $C_{121} \cdots C_{124} \cdots C_{1$                                                                                                                   | 95 0(2)                          | 94 8(1)                    | 99.0(6)                         | 95 6(8)                                   |
| $C_{121} = C_{121} = C_{24} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 159(5)                           | 157(3)                     | 94(30)                          | 145(17)                                   |
| $C_{124} \cdots C_{121} C_{124} C_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 499(2)                         | 3 423(1)                   | 3 539(13)                       | 3 440(17)                                 |
| $C_{124} C_{121}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.499(2)                         | 9.423(1)                   | 3.339(13)                       | 5.440(17)                                 |
| $C_{24} = C_{124} = C_{121}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95.0(2)                          | 94.0(1)<br>177.0(1)        | 177 Q(5)                        | 95.0(8)<br>176.1(8)                       |
| $C_{124} = C_{121} = -C_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177.0(2)                         | 177.9(1)                   | 94(30)                          | 1/0.1(8)<br>1/0.1(7)                      |
| <u>Cl14Cl22V</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 576(2)                         | $\frac{-137(3)}{3400(1)}$  | $\frac{-94(30)}{3.624(16)}$     | $\frac{-143(17)}{2522(18)}$               |
| $C14-C114\cdots C122^{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.370(2)<br>126.0(2)             | 3.499(1)<br>126.8(1)       | 3.024(10)<br>126.2(5)           | 126 3(6)                                  |
| C14 - C114 - C122<br>C114 - C122V - C22V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0(2)<br>158 3(2)             | 120.0(1)<br>158 9(1)       | 120.2(3)<br>158 6(7)            | 158 2(8)                                  |
| C14 C122 - C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 138.3(2)<br>122.2(6)             | 130.9(1)<br>110 2(4)       | 138.0(7)<br>123(1)              | 130.2(0)<br>122(1)                        |
| $C_{14} = C_{114} = C_{122} = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -122.2(0)                        | -119.2(4)<br>2 400(1)      | -123(1)<br>2.624(16)            | -122(1)<br>2 522(19)                      |
| $C_{122} = C_{114}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.370(2)                         | 5.499(1)                   | 3.024(10)                       | 5.552(10)                                 |
| $C_{22}$ $C_{122}$ $C_{114}$ $C_{14}$ $C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 138.3(2)<br>126.0(2)             | 136.9(1)                   | 136.0(7)<br>126.2(5)            | 136.2(6)                                  |
| $C_{122} = C_{114} = C_{14} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.0(2)                         | 120.0(1)<br>110.2(4)       | 120.2(3)<br>122(1)              | 120.3(0)<br>122(1)                        |
| $\frac{C_{22}-C_{122}\cdots C_{114}\cdots -C_{14}\cdots -$ | 2 005                            | 2 008                      | 2 150                           | 2.050                                     |
| $C_{124} = 0.000 \text{ m}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.095<br>154 4                   | 2.998                      | 5.150                           | 2.939                                     |
| $C_{24}$ $C_{124}$ $C_{16}$ $W$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 134.4                            | 133.0                      | 130.1                           | 130.8                                     |
| $C_{124} = C_{104} = C_{1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 114.0                            | 114.7                      | 119.9                           | 119.8                                     |
| $U_{24} - C_{124} - C_{10} - C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 151.1                            | 152.9                      | 155.7                           | 149.1                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.095                            | 2.998                      | 3.150                           | 2.959                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114.8                            | 114./                      | 119.9                           | 119.8                                     |
| H16C124C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 154.4                            | 153.8                      | 150.1                           | 150.8                                     |
| C10-H16····C124 <sup>m</sup> -C24 <sup>m</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -151.1                           | -152.9                     | -155./                          | -149.1                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.002                            | 2.960                      | 3.132                           | 2.959                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 113.1                            | 112.3                      | 112.4                           | 111.2                                     |
| $C121 + H25^{v_1} - C25^{v_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 151.9                            | 150.8                      | 149.9                           | 146.2                                     |
| $C_{21}$ - $C_{121}$ ····H25 <sup>v1</sup> - $C_{25^{v1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 159.1                            | 159.7                      | 161.9                           | 159.0                                     |
| H25Cl21v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.002                            | 2.960                      | 3.132                           | 2.959                                     |
| C25–H25···Cl21v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 151.9                            | 150.8                      | 149.9                           | 146.2                                     |
| $H25\cdots Cl21^{v}-C21^{v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 113.1                            | 112.3                      | 112.4                           | 111.2                                     |
| C25–H25···Cl21 <sup>V</sup> –C21 <sup>V</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -159.1                           | -159.7                     | -161.9                          | -159.0                                    |
| Symmetry codes: (I) $3/2 - x$ , $-1/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2 + y, 1/2 - z; (II) 3/2 - z)   | x, 1/2 + y, 1/2 - z; (III) | 1/2 + x, $1/2 - y$ , $-1/2 + z$ | x; (IV) $-1/2 + x, 1/2 - y,$              |
| 1/2 + z; (V) $1/2 + x$ , $1/2 - y$ , $1/2 + z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | z; (VI) $-1/2 + x$ , $1/2 - y$ , | -1/2 + z.                  |                                 |                                           |

**Table S3.** The geometries (Å, °) of the shortest intra- and intermolecular contacts of 124TCB at 270 K/0.1 MPa, 100 K/0.1 MPa, 295 K/0.16 GPa and 295 K/0.64 GPa.

**Table S4.** The void volume calculations of 124TCB (0.5 Probe Radius and 0.5 Approx. Grid Spacing) [C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, *J. Appl. Cryst.* 2008, **41** 466–470].

| Temperature/Pressure                           | 270 K/0.1 MPa | 100 K/0.1 MPa | 295 K/0.16 GPa | 295 K/0.64 GPa |
|------------------------------------------------|---------------|---------------|----------------|----------------|
| Void volume of the unit cell (Å <sup>3</sup> ) | 74.63         | 54.14         | 90.06          | 52.43          |
| % of the unit cell                             | 5.3           | 4.0           | 6.3            | 3.8            |