Supplementary Information

Room temperature synthesis of ZIF-8 membranes from seeds

anchored in gelatin films for gas separation

Pan Hu,^a YefengYang,^{b,c} Yiyin Mao,^a Junwei Li,^a Wei Cao,^a Yulong Ying,^a Yu Liu,^a Jiahuan Lei,^a Xinsheng Peng ^{a,b*}

^a State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, China. Fax: 86-571-87952625; Tel: 86-571-87951958;

E-mail: pengxinsheng@zju.edu.cn.

^b MOE Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.

^C Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.

1. FTIR spectra of the pure gelatin and GA-cross-linked gelatin

Fig. S1, the FTIR of gelatin before and after cross-linking shows a new peak at 2359 cm⁻¹ is observed from the GA cross-linked gelatin, which arises from the C-H bond in the C_3H_6 alkene generated by the cross-link reaction between gelatin chains with GA similar as we reported elsewhere.¹

Figure S1. The FTIR spectra of (a) pure gelatin; (b) GA cross-linked gelatin/Zn(OH)2 film.

2. SEM image of ZIF-8 seeds directly on gelatin films and the ZIF-8 thin films after secondary growth

Figure S2. SEM images of (a) surface of ZIF-8 seeds directly on gelatin films, (b) ZIF-8 membrane after secondary growth using seeds (a).

3. SEM images of the ZIF-8/gelatin membrane after secondary growth using seeds converted from 0.2 mL gelatin solution (0.1 wt%) with 10 mL ZHNs

Figure S3. SEM images of (a) cross section of ZIF-8/gelatin membrane after secondary growth using seeds converted from 0.2 mL gelatin solution (0.1 wt%) with 10 mL ZHNs; (b) the higher magnification zoomed from the marked area in (a).

4. SEM images of ZIF-8 membrane after sonication

Figure S4: SEM images of surface of (a) ZIF-8 seeds converted from 0.2 ml gelatin solution (0.1 wt%) with 10ml ZHNs after sonication at 150 W for 1h, 3h; (b) ZIF-8 membrane after secondary growth using seeds (a) after sonication at 150 W for 1h,3h. (c) ZIF-8 membrane after secondary growth using seeds converted from 10mL pure ZHNs after sonication at 150 W for 1 h, 1.5 h.

5. ZIF-8/gelatin composite membrane on PTFE porous support after secondary growth using seeds converted from ZHNs/gelatin

Figure S5: SEM images of (a) surface and (b) cross section of ZIF-8/gelatin seeds prepared by using 0.2 mL gelatin solution (0.1 wt%) with 10mL ZHNs on PTFE; (c) surface and (d) cross section of ZIF-8/gelatin composite membrane after secondary growth using seeds (a) and (b) on PTFE.

6. Pressure dependence and durability of the prepared ZIF-8/gelatin membranes

Figure S6. (a) Gas permeance through the prepared ZIF-8membrane converted from 0.2 mL gelatin with 10 mL ZHNs after secondary growth under different pressures; (b) Time dependence of H₂ permeability (\blacksquare), CH₄ (\bullet), H₂/CH₄ separation factors (\blacksquare) through ZIF-8 membrane converted from 0.2 mL gelatin with 10mL ZHNs after secondary growth.

7. Gas separation performance of various ZIF-8 membranes

	Support	Preparation			Performance			
MOF		Synthesis	T /°C	Solvent	Thickness	Permeance (H ₂)	Selectivity	Ref
		method	I/C		(µm)	mol.10-8s-1pa-1m-2	$H_2/CH_4)$	
ZIF-8	polysulfone	Direct	00	Methanol	10	20±4	10.52±0.6	3
		synthesis	90					
ZIF-8	Alumina	Direct	25	Methanol	25	24	13	4
		synthesis	23					
ZIF-8	YSZ fibers	Seeded	25	Water	2	154	13	5
		growth	23					
ZIF-8	Alumina	Seeded	23	Water	2.5	36	4.5	6
		growth	23					
ZIF-8	Alumina	Pre-		Methanol	15	34	8.2	7
		deposition	100					
		synthesis						
ZIF-8	Alumina/PT	Seeded	25	Water	2	768	14.2	This
	FE	growth	23					work

Table S1: Summary of various ZIF-8 membranes for gas separation

Reference:

1. L. Shi, Q. Yu, Y. Y. Mao, H. B. Huang, H.W. Huang, Z. Z. Ye and X. S. Peng, J. Mater. Chem. A, 2013, 1, 1899.