Supporting Information

Diverse Architectures and Luminescent Properties of Two Novel Copper(I) Coordination Polymers Assembled from 2,6-Bis[3-(pyrid-4-yl)-1,2,4-triazolyl]pyridine Ligands

Jie Pan,^{ab} Cai-Ping Liu,^a Fei-Long Jiang,^a Ming-Yan Wu,^a Lian Chen,^a Jin-Jie Qian,^{ab} Kong-Zhao Su,^{ab} Xiu-Yan Wan,^{ab} and Mao-Chun Hong*^a

^aKey Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China

^bUniversity of the Chinese Academy of Sciences, Beijing, 100049, China

To whom correspondence should be addressed. Tel: +86-591-83792460. Fax: +86-

591-83794946. E-mail: hmc@fjirsm.ac.cn

1. PXRD patterns of complexes 1 and 2.

Figure S1. PXRD experimental and calculated patterns for complexes.

2. TGA curves for complexes 1 and 2.

Figure S2. TGA curves for complexes 1 and 2.

3. Diffuse reflectance spectra of the complexes 1 and 2 in the solid state.

Figure S3. Diffuse reflectance spectra of the complexes 1 and 2 in the solid state.

4. CIE-1931 chromaticity diagram for H₂bptp, **1** and **2**.

Figure S4. CIE-1931 chromaticity diagram showing the blue, yellow and orange-red luminescence at 298 K for H₂bptp, **1** and **2**, respectively. CIE coordinates are calculated using the software GoCIE, obtained from http://www.geocities.com/krjustin/gocie.html, accessed in 2010.

5. Solid-state emission spectra of the H_2 bpt at 298 K.

Figure S5. Solid state emission spectra of free H₂bptp ligand.

 Selected bond lengths (Å) and angles (°) for complexes 1 and 2. Table S1. Selected Bond Lengths (Å) and Angles (°) for Complexes.

Complex 1			
Cu1—N21	1.881 (3)	Cu4—Cu5	2.9932 (9)
Cu1—N4	1.905 (3)	Cu5—N8	1.880 (3)
Cu1—N5	2.374 (3)	Cu5—N25	1.890 (3)
Cu2—N31	1.880 (3)	Cu6—N16	1.868 (3)
Cu2—N12	1.888 (3)	Cu6—N35	1.878 (3)
Cu2—Cu1	2.9047 (10)	Cu6—Cu5	2.9259 (11)
Cu2—Cu4	3.0386 (9)	Cu6—Cu3	2.9261 (9)
Cu3—N7	1.886 (3)	Cu7—N17	1.966 (3)

Cu3—N13	1.888 (3)	Cu7—N26	2.007 (3)
Cu3—N14	2.455 (3)	Cu7—N1 ⁱ	2.051 (3)
Cu3—Cu4	2.5466 (9)	Cu8—N30	1.941 (3)
Cu3—Cu1	3.0240 (10)	Cu8—N3	1.959 (3)
Cu4—N34	1.887 (3)	Cu8—N28 ⁱⁱ	2.036 (3)
Cu4—N22	1.890 (3)		
N21—Cu1—N4	155.98 (14)	Cu6—Cu3—Cu1	157.94 (2)
N21—Cu1—N5	126.58 (12)	N34—Cu4—N22	167.05 (13)
N4—Cu1—N5	76.34 (12)	N34—Cu4—Cu3	94.37 (10)
N21—Cu1—Cu2	92.50 (10)	N22—Cu4—Cu3	96.87 (10)
N4—Cu1—Cu2	79.58 (10)	N34—Cu4—Cu5	88.59 (9)
N5—Cu1—Cu2	119.18 (8)	N22—Cu4—Cu5	87.48 (9)
N21—Cu1—Cu3	92.16 (9)	Cu3—Cu4—Cu5	78.03 (3)
N4—Cu1—Cu3	106.97 (10)	N34—Cu4—Cu2	100.90 (9)
N5—Cu1—Cu3	62.02 (8)	N22—Cu4—Cu2	87.67 (9)
Cu2—Cu1—Cu3	73.55 (3)	Cu3—Cu4—Cu2	78.41 (2)
N31—Cu2—N12	172.64 (13)	Cu5—Cu4—Cu2	155.18 (2)
N31—Cu2—Cu1	89.82 (11)	N8—Cu5—N25	163.63 (14)
N12—Cu2—Cu1	89.24 (10)	N8—Cu5—Cu6	93.30 (10)
N31—Cu2—Cu4	91.82 (10)	N25—Cu5—Cu6	80.35 (10)
N12—Cu2—Cu4	94.91 (9)	N8—Cu5—Cu4	91.12 (9)
Cu1—Cu2—Cu4	73.34 (2)	N25—Cu5—Cu4	101.39 (9)
N7—Cu3—N13	160.21 (13)	Cu6—Cu5—Cu4	73.62 (2)
N7—Cu3—N14	100.84 (13)	N16—Cu6—N35	172.95 (13)
N13—Cu3—N14	76.81 (12)	N16—Cu6—Cu5	87.86 (11)
N7—Cu3—Cu4	94.86 (10)	N35—Cu6—Cu5	92.71 (10)
N13—Cu3—Cu4	98.54 (10)	N16—Cu6—Cu3	95.32 (10)
N14—Cu3—Cu4	142.96 (8)	N35—Cu6—Cu3	91.57 (9)
N7—Cu3—Cu6	91.56 (10)	Cu5—Cu6—Cu3	73.58 (3)
N13—Cu3—Cu6	104.94 (10)	N17—Cu7—N26	122.91 (12)
N14—Cu3—Cu6	65.88 (7)	N17—Cu7—N1 ⁱ	121.23 (13)
Cu4—Cu3—Cu6	80.47 (2)	N26—Cu7—N1 ⁱ	115.67 (12)
	82.07(10)	N30—Cu8—N3	126.65 (13)
N7—Cu3—Cu1	83.07 (10)		
N7—Cu3—Cu1 N13—Cu3—Cu1	85.35 (9)	N30—Cu8—N28 ⁱⁱ	120.89 (14)
N7—Cu3—Cu1 N13—Cu3—Cu1 N14—Cu3—Cu1	85.35 (9) 136.13 (7)	N30—Cu8—N28 ⁱⁱ N3—Cu8—N28 ⁱⁱ	120.89 (14) 110.80 (14)

Symmetry codes:	(i) x, 1+y, z;	(ii) 2-x, -y, 1-z;	(iii) x, -1+y, z.
-----------------	----------------	--------------------	-------------------

		Complex 2	
Cu1—N15 ⁱⁱⁱ	1.932 (6)	Cu3—N7	2.089 (6)
Cu1—N2	1.950 (6)	Cu4—N4 ⁱ	1.944 (6)
Cu1—N5	2.315 (7)	Cu4—N12	1.967 (7)
Cu2—N6	1.892 (8)	Cu4—N9 ⁱⁱ	2.038 (7)

Cu2—N13 ⁱⁱⁱ	1.903 (7)	Cu5—C39 ^{iv}	1.868 (8)
Cu2—Cu1	2.701 (2)	Cu5—N10 ^v	2.015 (8)
Cu3—N19	1.870 (8)	Cu5—N18	2.084 (8)
Cu3—N17	1.973 (7)		
N15 ⁱⁱⁱ —Cu1—N2	146.0 (3)	N19—Cu3—N17	145.2 (3)
N15 ⁱⁱⁱ —Cu1—N5	125.8 (3)	N19—Cu3—N7	114.7 (3)
N2—Cu1—N5	78.5 (2)	N17—Cu3—N7	100.0 (3)
N15 ⁱⁱⁱ —Cu1—Cu2	99.6 (2)	N4 ⁱ —Cu4—N12	136.9 (3)
N2—Cu1—Cu2	111.4 (2)	N4 ⁱ —Cu4—N9 ⁱⁱ	115.8 (3)
N5—Cu1—Cu2	72.24 (17)	N12—Cu4—N9 ⁱⁱ	106.0 (3)
N6—Cu2—N13 ⁱⁱⁱ	167.4 (3)	C39 ^{iv} —Cu5—N10 ^v	138.1 (3)
N6—Cu2—Cu1	87.5 (2)	C39 ^{iv} —Cu5—N18	120.3 (3)
N13 ⁱⁱⁱ —Cu2—Cu1	99.8 (2)	N10 ^v —Cu5—N18	100.5 (3)
Symmetry codes: (i) -1+x, y, 1+z; (ii) -1+x, y, z; (iii) -x, 1-y, 1-z; (iv) -x, 2-y, 1-z; (v) -1-x, 1-y, 2-z.			

7. Photoluminescent data of complexes 1 and 2.

Table S2. Photoluminescent	data of co	omplexes 1	and 2 .
----------------------------	------------	------------	----------------

Complex 1			
T/K	λ_{ex}/nm	λ_{em}/nm	τ/s
200	290	380 623	6.975×e ⁻⁸ (51.53% ^a)
298	580		4.189×e ⁻⁷ (48.47% ^a)
10	380	623	1.078×e ⁻⁵ (80.14% ^a)
			1.172×e ⁻⁶ (19.86% ^a)
Complex 2			
298	380	673	1.084×e ⁻⁶
10	380	650	1.325×e ⁻⁵ (88.98% ^a)
			3.110×e ⁻⁶ (11.02% ^a)
^a Biexponential decay.			