A Random Forest Model for Predicting the Crystallisability of Organic Molecules

Rajni M. Bhardwaj,^a Andrea Johnston, ^a Blair F. Johnston, ^a and Alastair J. Florence ^{a*}

^{*a*}Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K * To whom correspondence should be addressed. E-mail: <u>alastair.florence@strath.ac.uk</u>

Table of Contents

1.	Schemtaic Workflow of Random Forest	2
2.	Preparation of the Dataset	3
3.	Error Plot	5
4.	Important Descriptors Assessment	6
5.	References	7

1. Schemtaic Workflow of Random Forest

Random Forest ---- Building the Model Forest

Fig. 1 Schematic workflow of building of Random Forests model.

Bootstrap sampling and random selection of input descriptors are used to induce randomness in the input data used to develop the RF model. This ensures that the classification trees grown in the forest are dissimilar and not correlated to each other. Using bootstrap sampling, classification trees are grown using 2/3rd of the dataset and remaining 1/3rd of the dataset [Out Of Bag (OOB) data] is employed to obtain unbiased estimates of correct classification rates (internal estimates of error). Compared to a single classification tree, this algorithm yields better prediction rates and is more robust in dealing with noise in the data set because the forest of trees are grown to the full extent. The generalisation error of a forest of trees classifiers depends on the strength of the individual tree in the forest and the correlation between them.

2. Preparation of the Dataset

All the molecules were drawn using Chemdraw Ultra (version 11.0) and reliable 3-D conformations generated in Discovery Studio using the Pipeline Pilot interface (Accelrys, 2010). 2-D (185) and internal 3-D (i3-D) (123) molecular descriptors were calculated using MOE.¹ 2-D molecular descriptors are defined to be numerical properties and calculated from the atoms and connection table of the molecule. 3-D molecular descriptors can be classified in two categories: one that depend on internal coordinates only and 2nd that depend on absolute orientation of molecule. A brief explanation of the list of calculated 2- and 3-D molecular descriptors which were used to model the solvent library are given in Table 1 (Source: http://www.chemcomp.com/journal/descr.htm).

 Table 1 Molecular descriptors and brief explanation that were calculated for solvent molecules.

Descriptors	Category	
2-D descriptors		
apol, bpol, Fcharge, mr, SMR, Weight,	physical	Physical properties are calculated
logP (o/w), SlogP, vdw_vol, density,	properties	from the connection table of a
vdw-area		molecule
SlogP_VSA0-SlogP_VSA9,	subdivided	The Subdivided Surface Areas are
SMR_VSA0 - SMR_VSA7	surface areas	descriptors based on an approximate
		accessible van der Waals surface area
		calculation for each atom, v_i along
		with some other atomic property, p_i .
a_aro, a_count, a_heavy, a_ICM, a_IC,	atom count and	The atom count and bond count
a_nH, a_nB, a_nC, a_nN, a_nO, a_nF,	bond count	descriptors are functions of the counts
a_nP, a_nS, a_nCl, a_nBr, a_nI,		of atoms and bonds
b_1rotN, b_1rotR, b_ar, b_count,		
b_double, b_heavy, b-rotN, b_rotR,		
b_single, b_triple, VAdjMa, VAdjEq		
chi0, chi0_C, chi1, chi1_C, chi0v,	Kier&Hall	The Kier and Hall kappa molecular
chi0v_C, chi1v, chi1v_C, Kier1 -	Connectivity	shape indices compare the molecular
Kier3, KierA1 - KierA3, KierFlex,	and Kappa	graph with minimal and maximal
zagreb	Shape Indices	molecular graphs, and are intended to
		capture different aspects of molecular
		shape.
balabanJ, diameter, petitjean, radius,	Adjacency and	The adjacency matrix, M, of a
VDistEq, VDistMa, weinerPath,	Distance Matrix	chemical structure is defined by the
weinerPol	Descriptors	elements [Mij] where Mij is I if
		atoms 1 and 1 are bonded and zero
		otherwise. The distance matrix, D, of
		a chemical structure is defined by the
		of the shortest path from atoms i to i:
		zero is used if atoms i and i are not
		part of the same connected
		component
a acc, a acid, a base, a don, a hyd,	Pharmacophore	The Pharmacophore Atom Type
vsa acc, vsa acid, vsa base, vsa don,	Feature	descriptors consider only the heavy
vsa hyd, vsa other, vsa pol	Descriptors	atoms of a molecule and assign a type
	1	to each atom
Q PC+ PEOE PC+, Q PC-	Partial Charge	Descriptors that depend on the partial
PEOE PC-, Q RPC+ PEOE RPC+,	Descriptors	charge of each atom of a chemical
Q_RPC- PEOE_RPC-, Q_VSA_POS	_	structure require calculation of those
PEOE_VSA_POS, Q_VSA_NEG,		partial charges.
PEOE_VSA_NEG, Q_VSA_PPOS,		
PEOE_VSA_PPOS, Q_VSA_PNEG		
PEOE_VSA_PNEG, Q_VSA_HYD		
PEOE_VSA_HYD, Q_VSA_POL		
PEOE_VSA_POL, Q_VSA_FPOS		
PEOE_VSA_FPOS, Q_VSA_FNEG		
PEOE_VSA_FNEG, Q_VSA_FPPOS		
PEOE VSA FPPUS, Q VSA FPNEG		
PEOE VSA_FPNEG, Q_VSA_FHYD		
PEOE VSA FRID, Q_VSA_FPUL		
$\begin{array}{c} FEUE_VSA_FFUL, FEUE_VSA+0 \\ \hline DEOE_VSA+0 \\ \hline DEOE_VSA+0 \\ \hline \end{array}$		
$\begin{array}{c} FLOE_V SATU, FEOE_V SATU \\ PEOE_V SA_6 \end{array}$		
3-D Descriptors		
o o procriptors		

E, E ang, E ele, E nb, E oop, E sol,	Potential Energy	The energy descriptors use the MOE	
E_stb, E_str, E_strain, E_tor, E_vdw,	Descriptors	potential energy model to calculate	
E_rele, E_rsol, E_rvdw	_	energetic quantities from stored 3D	
		conformations.	
ASA, dens, glob, pmi, pmiX, pmiY,	Surface Area,	Descriptors depend on the structure	
pmiZ, rgyr, std_dim1 -std_dim3, vol,	Volume and	connectivity and conformation	
VSA	Shape		
	Descriptors		
ASA+, ASA-, ASA_H, ASA_P, DASA,	Conformation	Descriptors depend upon the stored	
CASA+, CASA-, DCASA, dipole,	Dependent	partial charges of the molecules and	
diploeX, dipole, dipoleZ, FASA+,	Charge	their conformations.	
FASA-, FCASA+, FCASA-,	Descriptors		
FCASA H, FCASA P			

A correlation matrix was prepared using a Pearson correlation coefficient by using a Pipeline Pilot interface. Molecular descriptors which showed zero variance and covariance (threshold of Pearson correlation coefficient >90%) were removed from the dataset. The resultant dataset comprised of 151 calculated molecular descriptors.

3. Error Plot

The error plot in Fig. 2 provides an overall OOB error of prediction and prediction accuracy for the classification model and a confusion matrix in Table 2 provides information on the prediction accuracy and OOB error rate associated with each class.

Fig. 2 Error plot for the Random Forests classification model trained using 2-D and 3-D molecular descriptors of the molecules present in the dataset. Blue line shows the evolvement of overall OOB error of prediction with the addition of number of trees.

Table 2 Confusion matrix generated by Random Forests for classification of dataset of 382 molecules. Class 1 represents the molecules which crystallised and class 2 represents the molecules which did not crystallise.

Actual Class	Total Cases	% Correct	1, N=231	2, N=151	Class Error
1	303	67.7	205	98	32.34
2	79	67.1	26	53	32.91

4. Important Descriptors Assessment

The RF algorithm also assesses the importance of descriptors used in building of the classification model. It is assessed by replacing each descriptor in turn by random noise and the resulting deterioration in the model quality is a measure of descriptor importance. The deterioration in the RF model quality is assessed by mean decrease in accuracy (based on OOB data).

Table 2. Ten most important descriptors selected by Random Forests for classification model. Reproduced from web reference

1 //	• • .	• / 1		1	1 11		• , 1	. 1	
http://www.	11111 00	1n/ottoo	hmonta/1	nodon	hyllo	tovin/	introd	untion k	ntm
\mathbf{H}	iun ac	III/ allac			//////////////////////////////////////	$10 \times 111/$		испон і	шп
11000				pearep					

Descriptor	Rank	Descriptor Definition	Further Details of Descriptors
E_TOR	1	Torsion (proper and improper) potential energy	The energy descriptors use the MOE potential energy
E_VDW	2	van der Waals component of the potential energy	model to calculate energetic quantities from stored 3D conformations
GCUT_SMR_0	3	Atomic contribution to molar refractivity	The GCUT descriptors using atomic contribution to molar refractivity instead of partial charge
AM1_EELE	4	Electronic energy calculated using the AM1 Hamiltonian	Can be calculated from the connection table (with no dependence on conformation) of a molecule
BCUT_PEOE_3	5	Calculated from Adjacency Matrix of a chemical structure	It is calculated from the eigenvalues of a modified adjacency matrix.
B_1ROTR	6	Fraction of rotatable single bonds: b_1rotN divided by b_count.	The atom count and bond count descriptors are functions of the counts of atoms and bonds
VSURF_CW2	7	Capacity factor	Depend on the structure connectivity and conformation
Е	8	Value of the potential energy	Same description as for descriptors ranked from 1-2
B_ROTR	9	Fraction of rotatable bonds: b_rotN divided by b_count.	Same description as for descriptors ranked at 6
GCUT_SLOGP_1	10	Atomic contribution to logP	The GCUT descriptors using atomic contribution to logP instead of partial charge.

5. References

 MOE, 2002, Chemical Computing Group, 1010 Sherbrooke St. W, Montreal, Quebec, H3A 2R7.