Electronic Supporting Information for:

Predicting and Creating 7-connected Zn₄O vertices for the construction of exceptional metal-organic framework with nanoscale cages

Shizhe Bai, Weiquan Zhang, Yun Ling, Feilong Yang, Mingli Deng,* Zhenxia Chen,

Linhong Weng, and Yaming Zhou*

Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry,

Fudan University, Shanghai 200433, China

To whom corresponding: Dr. Deng M. L., Email: <u>mldeng@fudan.edu.cn</u>; Prof. Zhou Y.M., Email: <u>ymzhou@fudan.edu.cn</u>;

1. Materials and General Procedures.

All reagents were purchased from commercial sources and used without further purification. Thermogravimetric (TGA) analyses were investigated with a METTLER TOLEPO TGA/SDTA851 analyzer in N₂ atmosphere from 30 to 800 °C with a heating rate of 10 K min⁻¹. Elemental analysis was measured on an Elementar Vario EL III microanalyzer. IR spectra were measured from a KBr pellets on a Nicolet Nexus 470 FT-IR spectrometer in the range of 4000-400 cm⁻¹. X-ray powder diffraction (XRD) patterns were measured using a Bruker D4 powder diffractometer at 40 kV, 40 mA for Cu K α radiation ($\lambda = 1.5406$ Å), with a scan speed of 0.2 s/step and a step size of 0.05 °(2 θ). N2 or Ar sorption isothermal at 77 K were carried out on ASAP 2020 apparatus. Before gas sorption, the as-made crystal samples (about 100 mg) were exchanged with acetone (10 mL for three times) and then degased at room temperature overnight. The solid state fluorescent spectra were recorded on Hitachi F-4500 with a xenon arc lamp as the light source at room temperature. The EX Slit and EM Slit settled to be 5.0 nm and PMT Voltage: 400 V.

2. Theoretical Calculation Details

The structural model of basic zinc acetate $[Zn_4O(CH_3COO)_6]$, $[Zn_4O(CH_3COO)_7]^$ and $[Zn_4O(CH_3COO)_6(\eta_1-CH_3COO)]^-$ were built with the Visualizer Program from Accelrys, Inc. The geometry optimization calculations were carried using the program DMOL³.[1] The DND basis set with fine precision was used. DFT Semi-core Pseudopots (DSPP) was used for the treatments of core electrons. The GGA (PW91, BP, PBE and BLYP) functional was used respectively in the calculation. No imaginary frequency was observed for each model after geometry optimization.

3. Synthesis

{[(Zn₄O)₂(H₂O)₂(bptc)_{3.5}]·2CH₃NH₃·xG}_n (1) were obtained through solvothermal synthesis. A mixture of H₄bptc (0.058 g, 0.175 mmol), Zn(CH₃COO)₂·2H₂O (0.089 g, 0.4 mmol), and DMF (4 mL) were placed in a 15 mL teflon-lined stainless steel autoclave and was stirred for 10 min. Then 0.3 mL of nitric acid was added and the mixture was further stirred for another 10 min. The mixture was heated at 140 °C for 3 days, followed by slowly cooling down to room temperature. Colorless rhombus crystals of compound **1** were collected by filtration (yield: 48% based on H₄pbpdc). IR (KBr, cm⁻¹): 3077 (w), 2919 (m), 2854 (m), 1664 (vs), 1629 (vs), 1575 (vs), 1417 (vs), 1360 (vs), 1253 (m), 1180 (m), 1112 (s), 1082 (s), 902 (w), 823 (w), 775 (m). 727 (m), 661 (s), 613 (m).

4. X-ray Crystallographic Study

Data collection for 1 was carried out on a Bruker Apex Duo diffractometer with graphite monochromated Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å) at 173 K. Data reduction was performed with SAINT, and empirical absorption corrections were applied by SADABS program. Structures were solved by direct method using SHELXS program and refined with SHELXL program.[2] Heavy atoms and other non-hydrogen atoms were directly obtained from difference Fourier map. Final refinements were performed by full-matrix least-squares methods with anisotropic thermal parameters for all non-hydrogen atoms on F^2 . C-bonded H atoms were placed geometrically and refined as riding modes. The H atoms of coordinated and guest water molecules were not placed because of their disorder and the number was calculated based on the number of guest water oxygen atoms. The highest residual electron density peak (2.25) from difference Fourier map is around the Zn2 center of SBU-I with the distance of 0.84 Å. DFIX and ISOR commands were respectively used for guest molecules because they are in large disorder. Crystallographic data are listed in Table S5 and selected bond length and angles are listed in Table S6.

Table S1. Total energy and enthalpy data of CH_3COO^- , $Zn_4O(CH_3COO)_6$, $[Zn_4(CH_3COO)_7]^-$ and $[Zn_4O(CH_3COO)_8]^{2-}$ based on BP, PBE and BLYP function, respectively.

Function		Total Engineer	Free Energy	Free Energy	Enthalpy	Enthalpy
		(U ₂)	@ 298.15 K	@ 413.15 K	@298.15 K	@413.15 K
		(на)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
	CH ₃ COO	-228.5433068	12.611	4.498	32.787	34.767
DW /01	Zn ₄ O-6	-2465.2586135	147.079	116.157	220.07	236.535
PW91	Zn ₄ O-7	-2693.8735085	173.337	139.011	254.106	272.975
	Zn ₄ O-8	-2922.3771658	198.051	160.106	287.238	308.33
	CH ₃ COO	-228.5943223	12.539	4.415	32.741	34.724
DD	Zn ₄ O-6	-2465.6204208	145.939	114.65	219.869	236.359
BP	Zn ₄ O-7	-2694.2761491	173.256	139.23	253.339	272.005
	Zn ₄ O-8	-2922.8101730	199.895	163.657	284.946	305.394
	CH ₃ COO	-228.3605402	12.711	4.643	32.769	34.751
DDE	Zn ₄ O-6	-2463.0989781	149.964	120.443	219.431	235.662
PBE	Zn ₄ O-7	-2691.5304179	173.972	139.812	254.323	273.169
	Zn ₄ O-8	-2919.8508346	200.913	163.594	288.403	309.665
	CH ₃ COO	-228.5663615	12.717	5.025	31.899	33.663
	Zn ₄ O-6	-2464.7554995	147.429	117.768	217.326	233.402
BLIL	Zn ₄ O-7	-2693.3841117	170.278	135.447	252.319	271.275
	Zn ₄ O-8	/*	/*	/*	/*	/*

*The energy didn't converge in 100 SCF steps.

Table S2. ΔG and ΔH of the formation of $[Zn_4(CH_3COO)_7]^-$ calculated by BP, PBE and BLYP function, respectively.

 $Zn_4O(CH_3COO)_6 + CH_3COO^-$

Function	T(V)	G _{reactans}	G _{product}	$\Delta G^{t\#}$	H _{reactans}	H _{product}	$\Delta H^{t\#}$
Function	I (K)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
DUIO1	298.15	159.690	173.337	-31.275	252.857	254.106	-43.673
PW91	413.15	120.655	139.011	-26.566	271.302	271.302	-43.249
	298.15	158.478	173.256	-23.755	252.610	253.339	-37.804
Bb	413.15	119.065	139.230	-18.368	271.083	272.005	-37.611
DDE	298.15	162.675	173.972	-33.193	252.200	254.323	-42.367
PBE	413.15	125.086	139.812	-29.764	270.413	273.169	-41.734
BLYP	298.15	160.146	170.278	-28.931	249.225	252.319	-35.969
	413.15	122.793	135.447	-26.409	267.065	271.275	-34.853

 ${}^{\#} \Delta G^{t} = (Total \ Energy_{product} + G_{product}) - \sum (Total \ Energy_{reactants} + G_{reactants})$

 $\Delta H^{t} = (Total \ Energy_{product} + H_{product}) - \sum (Total \ Energy_{reactants} + H_{reactants})$

Table S3. ΔG and ΔH of the formation of $[Zn_4(CH_3COO)_8]^{2-}$ calculated by BP, PBE and BLYP function, respectively.

 $Zn_4O(CH_3COO)_6 + 2 CH_3COO^-$

[Zn₄O(CH₃COO)₈]²⁻

Francisco	T (V)	G _{reactans}	G _{product}	$\Delta G^{t\#}$	H _{reactans}	H _{product}	$\Delta H^{t\#}$
Function	I (K)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
DUIO1	298.15	172.301	198.051	5.708	285.644	287.238	-18.448
PW91	413.15	125.153	160.106	14.911	306.069	308.330	-17.781
BP	298.15	171.017	199.895	28.183	285.351	284.946	-1.100
	413.15	123.480	163.657	39.482	305.807	305.394	-1.108
DDE	298.15	175.386	200.913	6.215	284.969	288.403	-15.878
PBE	413.15	129.729	163.594	14.553	305.164	309.665	-14.811
BLYP	298.15	172.863	/*	/*	281.124	/*	/*
	413.15	127.818	/*	/*	300.728	/*	/*

*The energy didn't converge in 100 SCF steps.

[#] $\Delta G^{t} = (\text{Total Energy}_{\text{product}} + G_{\text{product}}) - \sum (\text{Total Energy}_{\text{reactants}} + G_{\text{reactants}})$

 $\Delta H^{t} = (Total \ Energy_{product} + H_{product}) - \sum (Total \ Energy_{reactants} + H_{reactants})$

Molecular fomular	Zinc salt and amount/mmol	Solvent and acid amount/mL	Temperature /°C	Time /days	Cell parameter (a, b, c /Å, α, β, γ /º)
$\label{eq:constraint} \begin{split} &[Zn_2(bptc)(H_2O)(DMF)_2] \cdot \\ & DMF \cdot H_2O \ ^b \end{split}$	NO ₃ , 0.2	DMF, 4 mL; HBF ₄ , 0.6 mL	90	2	14, 13, 18, 90, 96, 90
[Zn ₂ (bptc)(H ₂ O) ₂] • 2.67H ₂ O	NO ₃ , 0.6	DMF, 3 mL; EtOH, 2mL; HNO ₃ , 0.2 mL	90	5	19, 19, 25, 90, 90, 120
[Zn ₅ (Hbptc) ₃ (H ₂ O)]·2H ₃ O ·2 H ₂ O	OAc, 0.2	DMF, 4 mL; i-PrOH, 1mL; HNO ₃ , 1.2 mL	140	3	12, 31, 23, 90, 94, 90 ^d
[Zn ₃ (Hbptc) ₂ (DMF) ₂] • 2 DMF	OAc, 0.3	DMF, 4 mL; i-PrOH, 1mL; HNO3, 1.2 mL	140	2	17, 18, 16, 90, 109,90 ^d
[Zn ₂ (bptc)(DMF)] • 2 DMF	Cl, 0.4	DMF, 4 mL	140	2	20, 10, 18, 90, 114, 90 ^d
[(Zn ₄ O) ₂ (H ₂ O) ₂ (bptc) _{3,5}]·2 CH ₃ NH ₃ · <i>x</i> G (1)	OAc, 0.4	DMF, 4 mL HNO3, 0.3 mL	140	3	52, 52, 52, 90, 90,90

Table S4. Synthetic conditions of some other similar products.^a

 $^{\rm a}$ The molar amount of H₄bptc is 0.175 mmol for 1 and 0.2 mmol for the other compounds.

^b Isostructure with Co-MOF-502. ^[3]

^c Isostructure with Cu-MOF-505. ^[4]

^d These structures are firstly synthesized by our group, which are in preparation for publishing, so the detailed

crystallographic	data	is	not	given	here.
ci ystanographic	uata	15	not	given	ner

	1
Empirical formula	$C_{58}H_{45.33}N_2O_{36.17}Zn_8$
Formula weight	1871.92
Temperature (K)	173(2)
Wavelength (Å)	0.71073
Crystal system	Cubic
Space group	I a -3
<i>a</i> (Å)	52.623(3)
$V(Å^3)$	145726(24)
Ζ	48
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.024
$\mu ({ m mm^{-1}})$	1.607
<i>F</i> (000)	44960
Total collected	399468
Unique data, <i>R</i> _{int}	21758, 0.1504
GOF on F_2	1.096
R_1^{a} . $wR_2^{b}[I > 2\sigma(I)]$	0.0860, 0.2331
R_1 . w R_2 (all data)	0.1423, 0.3012
CCDC	1037939

Table S5. Crystal structure parameter and refinement data of 1.

^a $\mathbf{R}_1 = \sum ||F_0| - |F_c| / \sum |F_0|.$

^b wR₂ = $[\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$.

Compound 1			
Zn(1)-O(3)#1	1.920(7)	Zn(1)-O(51)	1.956(6)
Zn(1)-O(9)	1.967(6)	Zn(1)-O(17)	2.102(7)
Zn(1)-O(1)	2.284(7)	Zn(2)-O(2)	1.895(7)
Zn(2)-O(51)	1.920(6)	Zn(2)-O(21)#2	1.920(6)
Zn(2)-O(4)#3	2.354(7)	Zn(2)-O(20)#4	2.367(8)
Zn(3)-O(19)#5	1.873(8)	Zn(3)-O(51)	1.922(6)
Zn(3)-O(27)#6	1.936(7)	Zn(3)-O(10)	1.964(6)
Zn(4)-O(18)	1.908(8)	Zn(4)-O(51)	1.922(6)
Zn(4)-O(28)#7	1.954(6)	Zn(4)-O(22)#8	1.984(7)
Zn(5)-O(50)	1.998(6)	Zn(5)-O(7)#9	2.055(7)
Zn(5)-O(11)	2.063(6)	Zn(5)-O(5)	2.080(7)
Zn(5)-O(24)#10	2.163(6)	Zn(5)-O(100)	2.231(14)
Zn(6)-O(50)	1.972(6)	Zn(6)-O(8)#11	1.994(8)
Zn(6)-O(6)	2.039(8)	Zn(6)-O(14)#12	2.046(7)
Zn(6)-O(15)#13	2.092(7)	Zn(6)-O(101)	2.159(19)
Zn(7)-O(50)	1.910(6)	Zn(7)-O(12)	1.937(7)
Zn(7)-O(26)	1.970(6)	Zn(7)-O(13)#14	1.972(6)
Zn(8)-O(25)	1.951(7)	Zn(8)-O(50)	1.909(5)
Zn(8)-O(23)#15	1.914(7)	Zn(8)-O(16)#16	1.920(8)
O(3)#1-Zn(1)-O(51)	120.5(3)	O(3)#1-Zn(1)-O(9)	119.0(3)
O(51)-Zn(1)-O(9)	119.7(2)	O(3)#1-Zn(1)-O(17)	90.1(4)
O(51)-Zn(1)-O(17)	96.9(3)	O(9)-Zn(1)-O(17)	91.6(3)
O(3)#1-Zn(1)-O(1)	88.7(4)	O(51)-Zn(1)-O(1)	88.6(3)
O(9)-Zn(1)-O(1)	84.0(3)	O(17)-Zn(1)-O(1)	174.2(3)
O(2)-Zn(2)-O(51)	119.1(3)	O(2)-Zn(2)-O(21)#2	126.3(3)
O(51)-Zn(2)-O(21)#2	114.5(3)	O(2)-Zn(2)-O(4)#3	86.3(3)
O(51)-Zn(2)-O(4)#3	95.7(3)	O(21)#2-Zn(2)-O(4)#3	89.4(3)
O(2)-Zn(2)-O(20)#4	83.7(4)	O(51)-Zn(2)-O(20)#4	96.7(3)
O(21)#2-Zn(2)-O(20)#4	89.6(3)	O(4)#3-Zn(2)-O(20)#4	166.8(3)
O(19)#5-Zn(3)-O(51)	121.7(3)	O(19)#5-Zn(3)-O(27)#6	102.5(4)
O(51)-Zn(3)-O(27)#6	107.5(3)	O(19)#5-Zn(3)-O(10)	111.3(4)
O(51)-Zn(3)-O(10)	113.1(3)	O(27)#6-Zn(3)-O(10)	97.0(4)
O(18)-Zn(4)-O(51)	111.6(3)	O(18)-Zn(4)-O(28)#7	107.9(3)
O(51)-Zn(4)-O(28)#7	113.1(3)	O(18)-Zn(4)-O(22)#8	109.8(4)
O(51)-Zn(4)-O(22)#8	109.7(3)	O(28)#7-Zn(4)-O(22)#8	104.5(3)
O(50)-Zn(5)-O(7)#9	96.7(3)	O(50)-Zn(5)-O(11)	99.8(2)
O(7)#9-Zn(5)-O(11)	162.8(3)	O(50)-Zn(5)-O(5)	103.9(3)
O(7)#9-Zn(5)-O(5)	93.0(3)	O(11)-Zn(5)-O(5)	87.9(3)
O(50)-Zn(5)-O(24)#10	99.1(2)	O(7)#9-Zn(5)-O(24)#10	86.0(3)
O(11)-Zn(5)-O(24)#10	86.6(3)	O(5)-Zn(5)-O(24)#10	157.0(3)
O(50)-Zn(5)-O(100)	176.7(4)	O(7)#9-Zn(5)-O(100)	80.2(5)

Table S6. Selected bonds lengths (Å) and angles (°) for compound 1

			(Continued)
O(11)-Zn(5)-O(100)	83.2(4)	O(5)-Zn(5)-O(100)	77.6(4)
O(24)#10-Zn(5)-O(100)	79.6(4)	O(50)-Zn(6)-O(8)#11	104.4(3)
O(50)-Zn(6)-O(6)	97.5(3)	O(8)#11-Zn(6)-O(6)	91.0(4)
O(50)-Zn(6)-O(14)#12	104.5(3)	O(8)#11-Zn(6)-O(14)#12	151.2(4)
O(6)-Zn(6)-O(14)#12	84.3(3)	O(50)-Zn(6)-O(15)#13	106.0(3)
O(8)#11-Zn(6)-O(15)#13	86.5(4)	O(6)-Zn(6)-O(15)#13	156.3(4)
O(14)#12-Zn(6)-O(15)#13	86.6(3)	O(50)-Zn(6)-O(101)	174.8(12)
O(8)#11-Zn(6)-O(101)	79.1(11)	O(6)-Zn(6)-O(101)	78.6(12)
O(14)#12-Zn(6)-O(101)	72.0(11)	O(15)#13-Zn(6)-O(101)	77.8(12)
O(50)-Zn(7)-O(12)	111.5(3)	O(50)-Zn(7)-O(26)	114.0(2)
O(12)-Zn(7)-O(26)	107.2(3)	O(50)-Zn(7)-O(13)#14	115.5(3)
O(12)-Zn(7)-O(13)#14	103.8(3)	O(26)-Zn(7)-O(13)#14	104.0(3)
O(50)-Zn(8)-O(23)#15	119.5(3)	O(50)-Zn(8)-O(16)#16	119.3(3)
O(23)#15-Zn(8)-O(16)#16	105.9(4)	O(50)-Zn(8)-O(25)	109.0(3)
O(23)#15-Zn(8)-O(25)	99.3(4)	O(16)#16-Zn(8)-O(25)	100.3(5)
Zn(8)-O(50)-Zn(7)	109.6(3)	Zn(8)-O(50)-Zn(6)	106.7(3)
Zn(7)-O(50)-Zn(6)	108.6(3)	Zn(8)-O(50)-Zn(5)	108.2(3)
Zn(7)-O(50)-Zn(5)	116.6(3)	Zn(6)-O(50)-Zn(5)	106.6(3)
Zn(2)-O(51)-Zn(4)	109.5(3)	Zn(2)-O(51)-Zn(3)	112.0(3)
Zn(4)-O(51)-Zn(3)	111.3(3)	Zn(2)-O(51)-Zn(1)	103.4(3)
Zn(4)-O(51)-Zn(1)	118.5(3)	Zn(3)-O(51)-Zn(1)	101.7(3)

Symmetry transformations used to generate equivalent atoms: #1: 1-z, x, 0.5+y; #2: 0.5-x, y, 2-z; #3: 1-z, x, 0.5+y; #4: y, -0.5+z, 1-x; #5: y, -0.5+z, 1-x; #6: -0.5+z, 0.5+x, 0.5+y; #7: -0.5+z, 0.5+z, 0.5+x, 0.5+y; #8: 0.5-x, y, 2-z; #9: 0.5-y, 1-z, 0.5+x; #10: -1+z, 0.5-x, 0.5+y; #11: 0.5-y, 1-z, 0.5+x; #12: x, 1-y, 1.5-z; #13: -0.5+y, -0.5+z, 0.5+x; #14: x, 1-y, 1.5-z; #15: -1+z, 0.5-x, 0.5+y; #16: -0.5+y, -0.5+z, -0.5+z, -0.5+x.

Figure S1. The frontier molecular orbital profiles of CH_3COO^- , $Zn_4O(CH_3COO)_6$, $[Zn_4(CH_3COO)_7]^-$ and $[Zn_4O(CH_3COO)_8]^{2-}$ calculated by BP function.

The HOMO/LUMO (eV) of CH₃COO⁻, Zn₄O(CH₃COO)₆, [Zn₄(CH₃COO)₇]⁻ and

[Zn₄O(CH₃COO)₈]²⁻ based on BP, PBE and BLYP function, respectively.

Function	PW91		BP		PBE		BLYP	
	НОМО	LUMO	HOMO	LUMO	HOMO	LUMO	НОМО	LUMO
CH ₃ COO-	0.961	6.067	1.038	6.17	1.014	6.11	1.08	6.122
Zn ₄ O-6	-6.582	-1.441	-6.517	-1.353	-6.524	-1.409	-6.43	-1.428
Zn ₄ O-7	-2.827	1.893	-2.736	1.982	-2.783	1.925	-2.72	1.957
Zn ₄ O-8	0.247	4.651	0.256	5.071	0.212	4.532	/*	/*

*The energy didn't converge in 100 SCF steps.

Figure S3. The coordination mode between bptc ligands and zinc atoms (Hydrogen atoms, guest water molecules as well as CH₃NH₃ are omitted for clarity). Asymmetric code: A: 1-z, x, 0.5+y; B : 1-z, x, 0.5+y; C: 0.5+y, 1-z, 0.5+x; D: 0.5+y, 1-z, 0.5+x; E: x, 1-y, 1.5-z; F: x, 1-y, 1.5-z; G: -0.5+y, -0.5+z, 0.5+x; H: -0.5+y, -0.5+z, 0.5+x; I: y, -0.5+z, 1-x; J: y, -0.5+z, 1-x; K: 0.5-x, y, 2-z; L: 0.5-x, y, 2-z; M:-1+z, 0.5+x, 0.5+y; N:-1+z, 0.5-x, 0.5+y; O: -0.5+z, 0.5+x, 0.5+y; P: -0.5+z, 0.5+x, 0.5+y.

Figure S4. **1** viewing along [1, 1, 1] direction showing the channels that were filled with (a) protonated methanamine, and (b) water molecules.

Figure S5. (a) Connolly surface area calculated with probe atomic radii of 1.4 Å, (b) the theoretical accessible surface area calculated with probe atomic radii of 1.84 Å.

	Occupied Volume (Å	$(Å^3)$ Free Volume $(Å^3)$	Surface Area (Å ²)
Connolly surface @1.4 Å	50472.45	95250.12	35806.59
Solvent Surface @1.84 Å	106434.05	39288.51	18013.18
Accessible Solvent Surface	115320 /1	30303 15	121/1 03
@1.84 Å	113327.41	50575.15	12141.73

Theoretical Porosity = Free Volume/ (Free Volume+ Occupied Volume)×100%

1 is therefore calculated to be 65.36 %.

Theoretical surface area = A. S. S (per unit cell)/ $(D_c \times \text{Volume}) \times 10^4 \text{ m}^2/\text{g}$

The theoretical surface area of 1 is therefore calculated to be 881 m^2/g .

Figure S6. The components of 1 showing the abstraction of the (a) $Zn_4O(-CO_2)_7$ SBU as a distorted pentagonal bipyramid, (b) the ligand as two triangles, and (c) their assembly into a (3, 3, 7)- connected net

Figure S7. The TGA data of 1: the first step weight loss $(30 \sim 170 \text{ °C})$ could be attributed to the loss of the guest molecules; the second step weight loss $(360 \sim 520 \text{ °C})$ corresponded to the collapse of the framework.

Figure S8. The PXRD pattern of **1** exposed in air for 8 hours compared with that of as-made sample showing the phase transformation.

Reference

[1] (a) B. Delley, J. Chem. Phys., 1990, 92, 508–517. (b) B. Delley, J. Chem. Phys., 2000, 113, 7756-7764.

[2] (a) G. M. Sheldrick, SHELXL-97, Program Crystal Structure Refinement,
University of Go⁻⁻ttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXS-97,
Programs for X-ray Crystal tructure Solution, University of Go⁻⁻ttingen, Germany,
1997.

[3] B. L. Chen, N. W. Ockwig, F. R. Fronczek, D. S. Contreras and O. M. Yaghi, *Inorg. Chem.*, 2005, 44, 181-183.

[4] B. L. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras and O. M. Yaghi, Angew. Chem. Int. Ed., 2005, 44, 4745-4749.