Supporting Information

Dimeric Packing of Molecular Clips Induced by Interactions Between

π-Systems

Jungang Wang,[†] Miao Wang,[†] Jiachen Xiang,[†] Liping Cao,[‡] Anxin Wu^{*,†} and Lyle Isaacs^{*,‡}

[†]Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Hubei, Wuhan 430079, P. R. China
[‡]Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742

[†]chwuax@mail.ccnu.edu.cn; [‡]lisaacs@umd.edu

Table of contents	Page
General Experimental	S2
Synthesis and characterization of compounds 1-7	S2-S9
CSD search	S9
Details of the refinements and geometrical parameters of 1-7	S10-S13
¹ H and ¹³ C NMR Spectra for $1 - 7$	S14-S26

General Experimental. The reagents and solvents employed were commercially available and used as received without further purification. Dichloromethane was distilled from CaH₂ immediately before use. NEt₃ was distilled from KOH immediately before use. Compound **8** and **9** were prepared according to the reported methods.^{1,2} IR spectra were recorded on a Perkin-Elmer PE-983 infrared spectrometer as KBr pellets with absorption in 4000-400 cm⁻¹. NMR spectra were recorded on a Varian Mercury 400 or 600 MHz spectrometer and resonances (δ) are given in parts per million relative to tetramethylsilane (TMS) as internal standard. High resolution mass spectra were obtained on a Bruker Apex-Ultra 7.0T FTMS equipped with an electrospray ionization source (ESI). Melting points were determined using an XT-4 apparatus and were not corrected.

Synthesis and characterization of compounds 1-7

Scheme S1. Synthesis of Compounds 1 by Heck coupling.

Experimental procedure for compound 1. To a solution of $Pd(OAc)_2$ (2.3 mg, 0.01 mmol), PPh₃ (6.0 mg, 0.02 mmol) and **8**¹ (142 mg, 0.2 mmol) in freshly distilled Et₃N (5 mL) and DMF (5 mL) under Ar atmosphere at room temperature was added 4-vinylpyridine (63 mg, 0.6 mmol). The mixture was warmed to 110 °C for 12 h (monitored by TLC), and then the solvent was removed under reduced pressure. The solid residue was purified by flash chromatography (SiO₂, CH₂Cl₂/CH₃OH, 50:1) to give crude **1** (113 mg, 0.15 mmol, 75%) as a yellow solid. To further purify the crude product, about 2 mL ethyl acetate was added and the solution was vibrated by

ultrasonic oscillator. Finally, the solvent and the desired solid compound **1** were separated by centrifugation (98 mg, 0.13 mmol, 65%). M.p. > 300 °C. TLC (CHCl₃/MeOH 50:1) R_f 0.14. IR (KBr, cm⁻¹): 3420m, 2964w, 1758s, 1717s, 1596s, 1467s, 1433s, 1360w, 1307m, 1258s, 1019m, 943w. ¹H NMR (600 MHz, CDCl₃): δ = 8.40 (d, J = 4.8 Hz, 4H), 7.89 (d, J = 16.2 Hz, 2H), 7.33 (d, J = 5.4 Hz, 4H), 6.80 (d, J = 16.2 Hz, 2H), 6.42 (brs, 2H), 6.32 (s, 2H), 5.65 (d, J = 16.2 Hz, 2H), 5.21 (d, J = 16.2 Hz, 2H), 4.31 (q, J = 7.2 Hz, 2H), 4.28-4.24 (m, 4H), 4.18 (d, J = 16.8 Hz, 2H), 3.50 (s, 6H), 1.35 (t, J = 7.2 Hz, 3H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ = 166.1, 165.8, 156.4, 150.6, 149.8, 144.8, 135.6, 134.5, 129.9, 129.4, 126.6, 125.7, 120.9, 111.1, 80.7, 79.3, 63.4, 63.2, 55.9, 40.0, 37.1, 14.0, 14.0. HRMS (ESI): *m/z* [M + H]+ calcd for C₄₂H₄₁N₆O₈: 757.2980; found: 757.2967.

Scheme S2. Synthesis of Compounds 2 by Heck coupling.

Experimental procedure for compound 2. To a solution of Pd(OAc)₂ (2.3 mg, 0.01 mmol), PPh₃ (6.0 mg, 0.02 mmol) and 8 (142 mg, 0.2 mmol) in freshly distilled Et₃N (5 mL) and DMF (5 mL) under atmosphere Ar at room temperature added was 1,2,3,4,5-pentafluoro-6-vinylbenzene (116.4 mg, 0.6 mmol). The mixture was warmed to 110 °C for 12 h (monitored by TLC), and then the solvent was removed under reduced pressure. The solid residue was purified by flash chromatography (SiO₂, CH₂Cl₂/CH₃OH, 50:1) to give 2 (134 mg, 0.143 mmol, 72%) as a yellow solid. To further purify the crude product, about 2 mL ethyl acetate was added and the solution was vibrated by ultrasonic oscillator. Finally, the solvent and the desired solid compound 2 was separated by centrifugation (114 mg, 0.122 mmol, 61%). M.p. > 300 °C. TLC (CHCl₃/MeOH 50:1) R_f 0.17. IR (KBr, cm⁻¹): 3442w, 2986w, 2360w, 1724s, 1463s, 1259s, 1081m, 917w. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.27$ (d, J = 16.8 Hz, 2H), 7.45 (s, 2H), 6.77 (d, J = 16.2 Hz, 2H), 6.66 (s, 2H), 5.17 (d, J = 16.8 Hz, 2H), 4.98 (d, J = 15.0 Hz, 2H), 4.45 (d, J = 15.0 Hz, 2H), 4.28-4.23 (m, 4H), 4.04 (q, J = 7.2 Hz, 2H), 3.69 (s, 6H), 1.31 (t, J = 7.2 Hz, 3H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): $\delta = 166.1$, 165.8, 156.6, 150.9, 137.6, 135.7, 127.0, 125.8, 116.5, 111.9, 80.6, 79.6, 63.4, 63.0, 56.5, 40.5, 37.5, 14.0, 13.9. HRMS (APCI): m/z [M + H]⁺ calcd for C₄₄H₃₃F₁₀N₄O₈: 935.2138; found: 935.2133.

Scheme S3. Synthesis of **3** via Pd/H₂ reduction and amide bond formation.

Experimental procedure for compound 3. A mixture of 9^2 (66.8 mg, 0.10 mmol) and 10% Pd/C (20 mg,) in anh. DMF (5 mL) was stirred under H₂ (10-20 psi) at RT for 5 h. The reaction mixture was filtered under Ar, and concentrated under high vacuum at RT. The residue was dissolved in a mixture of anh. degassed CH₂Cl₂ (10 mL) and Et₃N (0.05 mL, 0.30 mmol). This solution was added to a solution of benzoyl chloride (14 µL, 0.11 mmol) in anh. degassed CH₂Cl₂ (10 mL) at -78 °C. After 15 min., the cooling bath was removed and stirring was continued at RT for 12 h. The reaction mixture was diluted with CHCl₃ (200 mL), washed with sat. aq. NaHCO₃ dried over anh. MgSO₄ and concentrated. Flash chromatography (SiO₂, CHCl₃/MeOH, 50:1) gave slightly impure **3** (70 mg, 0.085 mmol, 85%). To get highest purity material, the white solid was washed with EtOAc (1.0 mL), centrifuged, the supernatant decanted, and the residual solid dried under high vacuum yielding **3** (60 mg, 0.073 mmol, 73%). M.p. > 300 °C. TLC (CHCl₃/MeOH 50:1) R_f 0.34. IR (KBr, cm⁻¹): 3395m, 3322m, 2999w, 2964w, 2941w, 1759s, 1699s, 1682s, 1600w, 1580w, 1509m, 1470s, 1433s, 1356m, 1254s,

1154m, 1131m, 1079m, 1031w, 1012w, 942w. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.98$ (s, 2H), 8.13 (d, J = 6.6 Hz, 4H), 7.58 (m, 2H), 7.53 (t, J = 7.2 Hz, 4H), 6.68 (s, 2H), 5.03 (d, J = 16.2 Hz, 2H), 4.88 (d, J = 15.0 Hz, 2H), 4.52 (d, J = 15.6 Hz, 2H), 4.31 (d, J = 16.2 Hz, 2H), 4.25 (q, J = 7.2 Hz, 2H), 3.99 (q, J = 6.6 Hz, 2H), 3.77 (s, 6H), 2.18 (s, 6H), 1.28 (t, J = 7.2 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): $\delta = 165.8$, 165.7, 165.5, 157.7, 151.1, 136.6, 133.7, 133.2, 131.9, 131.0, 128.7, 127.5, 125.4, 111.9, 95.3, 80.0, 63.7, 63.1, 56.6, 40.7, 37.7, 16.1, 13.8, 13.7. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₄H₄₅N₆O₁₀: 817.3192, found: 817.3197.

Scheme S4. Synthesis of 4 by Sonogashira coupling.

Experimental procedure for compound 4. To a solution of Pd(PPh₃)₂Cl₂ (36 mg, 0.05 mmol), CuI (19 mg, 0.10 mmol) and **8** (354 mg, 0.50 mmol) in freshly distilled Et₃N (2 mL) and DMF (10 mL) under Ar atmosphere at room temperature was added ethynylbenzene (204 mg, 2.0 mmol). The mixture was warmed to 110 °C for 12 h (monitored by TLC) and then the solvent was removed under reduced pressure. The solid residue was purified by flash chromatography (SiO₂, CH₂Cl₂/CH₃OH, 50:1) to give **4** (251 mg, 0.335 mmol, 67%) as a white solid. In order to purify the crude product, about 2 mL ethyl acetate was added and the solution was vibrated by ultrasonic oscillator. Finally, the solvent and the desired solid compound **4** were separated by centrifugation (210 mg, 0.28 mmol, 56%). M.p. = 290-291 °C, TLC (CHCl₃/MeOH, 50:1) R_f 0.15. IR (KBr, cm⁻¹): 3438w, 2924w, 1725s, 1460s, 1427m, 1258s, 1081m, 757w. ¹H NMR (600 MHz, CDCl₃) δ 7.64 – 7.62 (m, 4H), 7.42 (s, 2H), 7.37 – 7.36 (m, 6H), 6.69 (s, 2H), 5.58 (d, *J* = 15.6 Hz, 2H), 5.06 (d, *J* = 15.6 Hz, 2H), 4.50 (d, J = 15.6 Hz, 2H), 4.42 (d, J = 15.6 Hz, 2H), 4.18 (q, J = 7.2 Hz, 2H), 4.04 (q, J = 6.6 Hz, 2H), 3.77 (s, 6H), 1.29 (t, J = 7.2 Hz, 3H), 1.20 (t, J

= 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.2 , 166.1 , 156.4, 151.1 , 138.2 , 131.9 , 131.7 , 128.5 , 128.24 , 125.9 , 123.7 , 122.9 , 112.2 , 95.7 , 87.1 , 80.1 , 63.4 , 63.0 , 56.8 , 56.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₄₄H₃₉N₄O₈: 751.2748; found: 751.2762.

Scheme S5. Synthesis of compound 5 by Sonogashira coupling.

Experimental procedure for compound 5. To a solution of Pd(PPh₃)₂Cl₂ (36 mg, 0.05 mmol), CuI (19 mg, 0.10 mmol) and **8** (354 mg, 0.50 mmol) in freshly distilled Et₃N (2 mL) and DMF (10 mL) under Ar atmosphere at room temperature was added 1-ethynyl-4-fluorobenzene (240 mg, 2.0 mmol). The mixture was warmed to 110 °C for 12 h (monitored by TLC) and then the solvent was removed under reduced pressure. The solid residue was purified by flash chromatography (SiO₂, CH₂Cl₂/CH₃OH, 50:1) to give **4** (298 mg, 0.38 mmol, 76%) as a white solid. In order to purify the crude product, about 2 mL ethyl acetate was added and the solution was vibrated by ultrasonic oscillator. Finally, the solvent and the desired solid compound **4** were separated by centrifugation (255 mg, 0.325 mmol, 65%). M.p. = 296-297 °C TLC (CHCl₃/MeOH, 50:1) R_f 0.12. IR (KBr, cm⁻¹): 3441w, 2986w, 1727s, 1510s, 1460s, 1427m, 1258s, 839m. ¹H NMR (600 MHz, DMSO) δ 7.71-7.69 (m, 4H), 7.44 (s, 2H), 7.33 (t, *J* = 9.0 Hz, 4H), 6.83 (s, 2H), 5.44 (d, *J* = 16.2 Hz, 2H), 5.16 (d, *J* = 16.2 Hz, 2H), 4.25 (d, *J* = 16.2 Hz, 2H), 4.21 – 4.15 (m, 4H), 3.69 (s, 6H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.22 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 166.1, 164.0, 161.6, 156.4, 151.2, 138.5,

133.8, 133.7, 131.5, 126.1, 123.7, 119.1, 115.8, 115.6, 112.2, 94.7, 86.9, 63.4, 63.0, 56.8, 42.9, 37.6, 14.0, 13.9. HRMS (APCI): *m/z* [M+H] ⁺ calcd for C₄₄H₃₇F₂N₄O₈: 787.2572; found: 787.2574.

Scheme S6. Synthesis of compound 6 by Sonogashira coupling.

Experimental procedure for compound 6. To a solution of Pd(PPh₃)₂Cl₂ (36 mg, 0.05 mmol), CuI (19 mg, 0.10 mmol) and **8** (354 mg, 0.50 mmol) in freshly distilled Et₃N (2 mL) and DMF (10 mL) under Ar atmosphere at room temperature was added 1-ethynylnaphthalene (304 mg, 2.0 mmol). The mixture was warmed to 110 °C for 12 h (monitored by TLC) and then the solvent was removed under reduced pressure. The solid residue was purified by flash chromatography (SiO₂, CH₂Cl₂/CH₃OH, 50:1) to give **4** (314 mg, 0.37 mmol, 74%) as a white solid. In order to purify the crude product, about 2 mL ethyl acetate was added and the solution was vibrated by ultrasonic oscillator. Finally, the solvent and the desired solid compound **4** were separated by centrifugation (280 mg, 0.33 mmol, 66%). M.p. > 300 °C, TLC (CHCl₃/MeOH, 50:1) R_f 0.13. IR (KBr, cm⁻¹): 3431w, 2920w, 1758s, 1722s, 1462s, 1425m, 1258s, 1080m, 801m, 774w. ¹H NMR (600 MHz, DMSO) δ 8.54 (d, *J* = 8.4 Hz, 2H), 8.07 (t, *J* = 9.0 Hz, 4H), 7.94 (d, *J* = 7.8 Hz, 2H), 7.72 (t, *J* = 7.8 Hz, 2H), 7.65 (m, 3H), 7.62 (t, *J* = 7.2 Hz, 2H), 6.81 (s, 2H), 5.61 (d, *J* = 16.2 Hz, 2H), 5.21 (d, *J* = 16.2 Hz, 2H), 4.70 (d, *J* = 16.2 Hz, 2H), 4.30 (q, *J* = 6.6 Hz, 2H), 4.22 (q, *J* = 6.6, 7.3 Hz, 2H), 4.18 (d, *J* = 16.2 Hz, 2H), 3.68 (s, 6H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR could not be obtained even with 12 h acquisition time because of

the low solubility of compound **6**. HRMS (APCI): m/z [M+H]⁺ calcd for C₅₂H₄₃N₄O₈: 851.3082; found: 851.3075.

Scheme S7. Synthesis of compound 7 by Suzuki coupling.

Experimental procedure for compound 7. To a solution of Pd(PPh₃)₄ (35 mg, 0.03 mmol), Na₂CO₃ (106 mg, 1 mmol) and **S1** (142 mg, 0.20 mmol) in DMF (10 mL) and H₂O (1 mL) under Ar atmosphere at room temperature was added naphthalen-2-ylboronic acid (103 mg, 0.60 mmol). The mixture was warmed to 100 °C for 2 h (monitored by TLC) and then the solvent was removed under reduced pressure. The solid residue was purified by flash chromatography (SiO₂, Petroleum ether b.p. 60-90 °C/EtOAc, 40:1) to give 7 (144 mg, 0.18 mmol, 90%) as a white solid. M.p. = 197-198 °C. TLC (Petroleum ether b.p. 60-90 °C/EtOAc 40:1) R_f 0.14. IR (KBr, cm⁻¹): 3446m, 2987w, 1722s, 1463s, 1430m, 1238s, 1082m, 821w, 481w. ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 2H), 7.91 – 7.89 (m, 6H), 7.69 (s, 2H), 7.53 – 7.52 (m, 4H), 7.44 (s, 2H), 6.80 (s, 2H), 5.39 (d, *J* = 15.6 Hz, 2H), 4.79 (d, *J* = 14.4 Hz, 2H), 4.48 (d, *J* = 12.0 Hz, 2H), 4.18 – 4.12 (m, 4H), 3.89 (q, *J* = 7.2 Hz, 3H), 3.82 (s, 6H), 1.28 (t, *J* = 6.6 Hz, 2H), 1.04 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.4, 166.0, 157.1, 151.3, 142.2, 137.6, 133.1, 132.5, 132.4, 130.5, 128.2, 128.1, 128.0, 127.6, 127.2, 126.6, 126.2, 126.1, 112.7, 81.6, 79.3, 63.3, 63.1, 57.1, 43.6, 37.3, 13.9, 13.8. HRMS (APCI): *m/z* [M + H]⁺ calcd for C₄₈H₄₃N₄O₈: 803.3077; found: 803.3075.

CSD search [CSD version 5.35 updates (May 2014)]

Total	monomer dimer				ner		
			in-in	out-		-out	
36		13		22		0	
	1			1			
CSD refcodes	packing	motif	CSE	D refcodes packing		motif	
AKAGUO	dimer	in-in	U	FONUZ	dimer		in-in
AKAHAV	dimer	in-in	0	CIDSIS	monomer		
HAHDOJ	monomer		C	CIDSOY dimer		in-in	
HEBYAP	monomer		C	CIDSUE dimer		limer	in-in
JISDEU	monomer		CIDTAL		dimer		in-in
JISDEU10	monomer		CIDTEP		dimer		in-in
LANWAY ^a			C	CIDTIT dim		limer	in-in
MUTFAI	dimer	in-in	H	HIRSIL dimer		limer	in-in
QIQDAV	dimer	in-in	K	KEKREY dime		limer	in-in
ROBWEK	dimer	in-in	KEKSEZ		dimer		in-in
ROBWEK01 ^{a,b}	dimer	in-in	KEKSID		dimer		in-in
SURDUE	monomer		KEKSOJ		dimer		in-in
VOKGUX	monomer		XEVCAD		monomer		
CURSIS	monomer		HEBYAP		monomer		
CURSOY	dimer	in-in	Ał	KAGUO	d	limer	in-in
CURSUE	dimer	in-in	Ał	AKAHAV dimer		limer	in-in
DIYYEQ	monomer		М	UTFAI	d	limer	in-in

Details :

^aNo structure available in CSD searched result, ^bthe packing structure was according to the reference (*Recl. Trav. Chim. Pays-Bas*, **1993**, *112*, 404-406).

ROBWEK01

monomer

References.

OFOXEN

1) Wang, Z.; Wang, Y.; Yin, G.; Wu, A. X. J. Chem. Crystallogr. 2008, 38, 591-594.

2) Liu, Q.; Wang, J.; Zhao, G. J. Chem. Crystallogr. 2012, 42, 727-732.

monomer

Details of the refinements of 1 - 7

For 1: In the refinement, the two chloroform solvent molecule (C43-Cl1-Cl2-Cl3 and C44-Cl4-Cl5-Cl6) were found to be disordered over two sites. The commands DFIX and EADP were used in the refinement to restrain some distances (e.g. C43-Cl1=1.73(1) Å) and thermal factors. The final most satisfactory occupancies for the C43, C44-involved chloroform were 0.57: 0.43 and 0.86:0.14 for the major and minor components, respectively.

For 4: In the refinement, one of the ethoxy groups (C29-C30) was found to be disordered. The commands DFIX, and EADP were used in the refinement to restrain some distances (eg. C29-C30=1.51(1) Å and C29-O4=1.45(1) Å) and thermal factors. The final most satisfactory occupancies for the C29-, C29'-involved ethoxy were 0.51:0.49 for the major and minor components.

For **5**: In the refinement, one of the ethoxy groups (C34-C35) was found to be disordered. The commands DFIX, and EADP were used in the refinement to restrain some distances (eg. C34-C35=1.51(1) Å and thermal factors. The final most satisfactory occupancies for the C34-, C34'-involved ethoxy were 0.50:0.50 for the major and minor components. One of three dichloromethane (C46) was disordered. The commands DFIX, and EADP were used in the refinement to restrain some distances (eg. C46-C15=1.73(1) Å and C15-C16=2.90(1) Å) and thermal factors. The final most satisfactory occupancies for the C46-, C46'-involved ethoxy were

0.46:0.54 for the major and minor components.

For **6**: In the refinement, one of the ethoxy groups (C13-C14) was found to be disordered. The command DFIX was used in the refinement to restrain some distances (eg. C13-C14=1.51(1) Å and C13-O6=1.51(1) Å) and thermal factors. The final most satisfactory occupancies for the C13-, C13'-involved ethoxy were 0.68:0.32 for the major and minor components.

For 7: In the refinement, one of the ethoxy groups (C37-C38) was found to be disordered. The command DFIX was used in the refinement to restrain some distances (eg. C37-C38=1.48 Å and C37-O6=1.38 Å) and thermal factors. The final most satisfactory occupancies for the C13-, C13'-involved ethoxy were 0.67:0.33 for the major and minor components. One chloroform solvent moleculer (C49-C11-C12-C13) wase found to be disordered over two sites. The command DFIX was used in the refinement to restrain some distances (eg. C43-C11=1.73 Å) and thermal factors. The final most satisfactory occupancies for the C49, C49'-involved chloroform were 0.87: 0.13 for the major and minor components. The naphthalene ring (C17-C26) was found to be disordered. The command DFIX was used in the refinement to restrain some distances (eg. C19- C24=2.42 Å and C19-C23=1.39 Å) and thermal factors. The final most satisfactory occupancies for the C49.20 for the major and minor components.

empirical formula	1	2	3	4	5	6	7
CCDC deposition	992389	992390	992391	992392	992393	992394	996879
number							
formula	C44H42N6O8Cl	$C_{45}H_{33}N_4O_8F_{10}C$	C46H46Cl6N6O	C45H39N4O8Cl	$C_{47}H_{41}F_2N_3O_{8.5}C$	$C_{53.5}H_{43.5}N_4O_8C$	$C_{49}H_{43}N_4O_8Cl_3$
	6	13	10	3	13	14.5	
formula weight	995.54	1054.10	1055.59	870.15	928.18	1029.95	922.22
crystal system	Triclinic	Triclinic	Triclinic	Monoclinic	Triclinic	Triclinic	Triclinic
space group	P-1	P-1	P-1	P2(1)/n	P-1	P-1	P-1
a (Å)	10.7259(9)	10.8333(15)	11.0037(13)	11.1774(14)	12.9379(12)	13.1674(15)	10.9368(13)
b (Å)	14.2208(12)	14.2199(19)	13.2032(14)	13.9112(18)	13.0294(12)	13.8587(16)	14.8456(18)
c (Å)	14.8907(12)	15.066(2)	17.428(3)	26.663(3)	15.7092(14)	13.8587(16)	15.7583(19)
a (deg)	92.5080(10)	93.122(2)	89.128(2)	90.00	114.0830(10)	64.005(2)	71.070(2)
β (deg)	93.7200(10)	108.057(2)	76.376(2)	97.601(2)	111.3440(10)	85.984(2)	89.029(2)
γ (deg)	98.8250(10)	99.045(2)	72.207(11)	90.00	76.410(2)	67.813(2)	69.365(2)
Z	2	2	2	4	2	2	2
V(Å ³)	2236.3(3)	2166.0(5)	2338.6(5)	4109.4(9)	2182.1(3)	2363.3(5)	2251.2(5)
$Dcalcd(g cm^{-3})$	1.478	1.616	1.499	1.406	1.413	1.447	1.361
μ (Mo K α) (mm ⁻¹)	0.445	0.316	0.433	0.284	0.278	0.341	0.263
F(000)	1028	1072	1092	1808	962	1066	960
temp (K)	100(2)	100(2)	100(2)	220(2)	100(2)	100(2)	296(2)
θ min-max (deg)	2.22, 20.81	1.43, 25.50	1.96, 25.01	1.54, 16.19	1.74, 22.69	1.46, 23.09	1.37, 23.89
tot., unique data	13370, 4582	15848, 7961	14575, 8145	9219, 2050	12070, 5719	13815, 6542	14305, 6825
R(int)	0.0315	0.0331	0.1022	0.0373	0.0251	0.0626	0.0335
obsd data [I >	3740	5667	6350	1700	4676	5135	3976
2σ(I)]							
Nref, Npar	4582, 643	7961, 636	8145, 619	2050, 553	5719, 631	6542, 691	6825, 723
R1,wR2 (all data)	0.0782,	0.0876, 0.1893	0.1276,	0.0489,	0.0671, 0.1746	0.0965, 0.2403	0.1059, 0.1818
	0.1951		0.2575	0.1040			
S	1.080	1.157	1.135	1.077	1.051	1.042	1.033
min and max resd	-0.727, 0.882	-0.595, 0.824	-1.183, 1.700	-0.204, 0.308	-0.530, 0.642	-0. 948, 0.962	-0.333, 0.362
dens (e Å ⁻³)							

C-Hπ Interactions							
	C-H→R(j)	HR (Å)	∠C-HR (°)	CR (Å)			
1 ^a	C(33)-H(33B)→R(C35-40)	2.88	161	3.833(5)			
2 ^b	C(36)-H(36A)→R(C37-42)	2.75	148	3.632(3)			

Table S2. C-H--- π interactions in the packing of 1 and 2

^aSymmetry codes: () 2-X, 1-Y, 1-Z; ^bSymmetry codes: (i) 1-X, -Y, 1-Z.

¹H and ¹³C NMR Recorded for Compounds 1 – 7.

Figure S1. ¹H NMR spectrum recorded (600 MHz, CDCl₃, RT) for compound **1**.

Figure S2. ¹³C NMR spectrum recorded (150 MHz, CDCl₃, RT) for compound 1.

Figure S3. ¹H NMR spectrum recorded (600 MHz, CDCl₃, RT) for compound **2**.

Figure S4. ¹³C NMR spectrum recorded (150 MHz, CDCl₃, RT) for compound **2**.

Figure S5. ¹H NMR spectrum recorded (600 MHz, CDCl₃, RT) for compound **3**.

Figure S6. ¹³C NMR spectrum recorded (150 MHz, CDCl₃, RT) for compound **3**.

Figure S7. ¹H NMR spectrum recorded (600 MHz, CDCl₃, RT) for compound **4**.

Figure S8. ¹³C NMR spectrum recorded (150 MHz, CDCl₃, RT) for compound **4**.

Figure S9. ¹H NMR spectrum recorded (600 MHz, DMSO, RT) for compound **5**.

Figure S10. ¹³C NMR spectrum recorded (150 MHz, CDCl₃, RT) for compound **5**.

Figure S11. ¹H NMR spectrum recorded (600 MHz, DMSO, RT) for compound **6**.

Figure S12. ¹H NMR spectrum recorded (600 MHz, CDCl₃, RT) for compound 7.

Figure S13. ¹³C NMR spectrum recorded (100 MHz, CDCl₃, RT) for compound 7.