Pt-porous ZnO nanoribbon hybrid materials with enhanced catalytic performance

Zhiqiang Cheng,^{1, 2} Mingyue Yu,*³ Guixia Yang,¹ and Lijuan Kang*¹

¹ College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, P.R China.

² School of Aerospace Engineering, Tsinghua University, Beijing, 100000, P.R China.

³ Changchun university of science and technology, Changchun, 130118, P.R China.

E-mail: mingyue141210@126.com, kanglijuan61@126.com

Experimental Section:

Synthesis of sub 3 nm Pt nanoparticles.

Typically, 10 mL K_2PtCl_4 aqueous solution (0.02 mM), 0.11 g PVP and 10 mL ethylene glycol are mixed together. After stirring for 15 min at room temperature, the mixture is hydrothermal treated at 130 °C for 3 hours. After cooling down to room temperature naturally, the as-obtained products are collected by the help of acetone and finally re-disperse in 40 mL water for further use.

Synthesis of Pt-Zn₅(CO₃)₂(OH)₆:

1 mmol $Zn(oAc)_2$ and 1 mmol L-lysine are dissolved in 7 mL water. Then 3 ml Pt colloid solution is added. Finally, the mixture is put into a Teflon autoclave and heated at 140 °C for 12 hours. After cooling down to room temperature naturally, the products are collected by centrifugation and dried at 60 °C overnight.

Synthesis of Pt-ZnO nanoribbon:

The above obtained $Pt-Zn_5(CO_3)_2(OH)_6$ power is further heated at 450 °C for 2 hours at a heating rate of 2 °C /min.

Synthesis of ZnO nanorod:

ZnO nanorods are synthesized according to the well-established HMT-assisted hydrothermal method.^{13, 21} 80 mL of 0.01 M aqueous solution of $Zn(NO_3)_2$ and HMT was put into a Teflon autoclave with a volume of 100 ml and heated at 95 °C for 5 h.

Photocatalytic Measurement:

50 mg of as-prepared nanocatalyst is added to 100 mL of 0.01 mM methyl orange (MO) aqueous solution. The mixture is treated under UV irradiation with a Xe arc lamp (400 W) with constant magnetic stirring to ensure a higher level of homogeneity of photocatalyst presence in the suspension. 5 mL of sample is drawn with a syringe. The concentration of MO is determined using a UV-VIS-NIR spectrophotometer.

Catalytic CO oxidation:

30 mg of catalyst is put in a stainless steel reaction tube. The experiment was carried out under a flow of reactant gas mixture (1 % CO, 20 % O₂, balanced with N₂) at a rate of 30 mL/min. The composition of the gas was monitored on-line by gas chromatography.

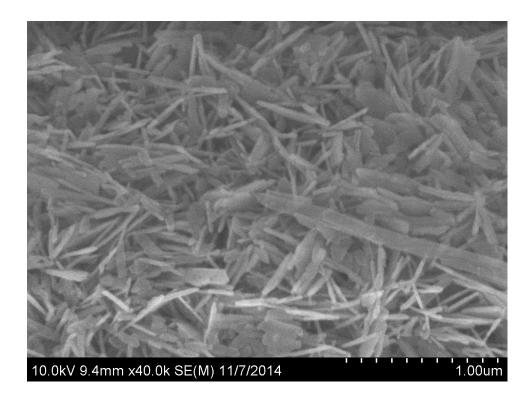


Figure S1. TEM image of Pt-Zn₅(CO₃)₂(OH)₆.

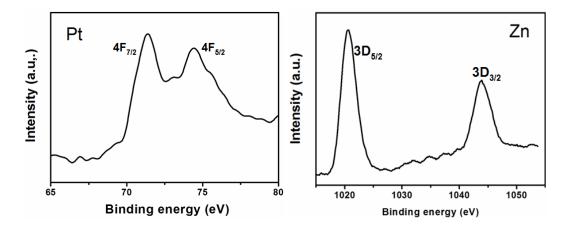
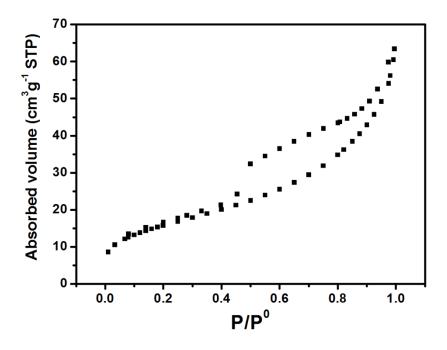
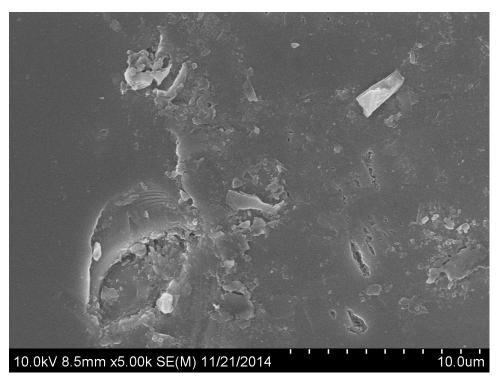
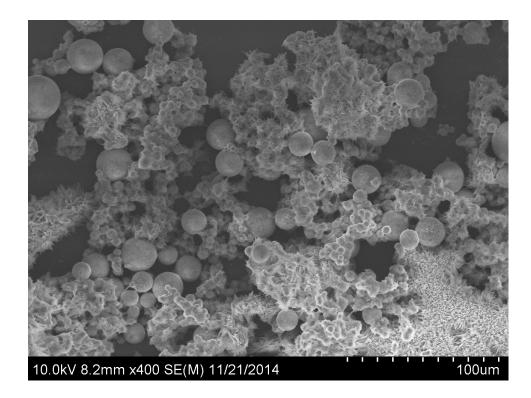
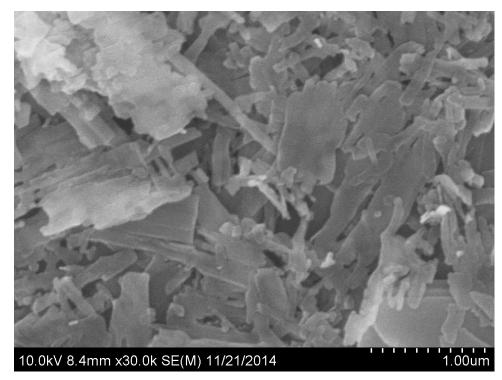
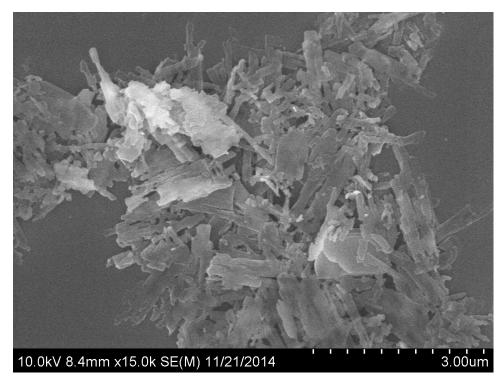


Figure S2. XPS data of Pt and Zn in Pt-ZnO nanoribbon.


Figure S3. BET curve of Pt-ZnO nanoribbons.


Figure S4. SEM image of $Pt-Zn_5(CO_3)_2(OH)_6$ obtained without addition of L-lysine in the reaction solution.

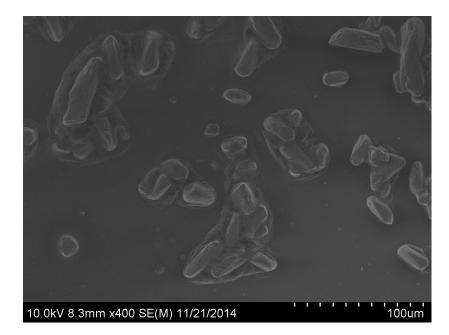

Figure S5. SEM image of $Pt-Zn_5(CO_3)_2(OH)_6$ obtained by addition of 2 mmol urea in the reaction solution..

Figure S6. SEM image of $Pt-Zn_5(CO_3)_2(OH)_6$ obtained by addition of 10 mmol urea in the reaction solution.

Figure S7. SEM image of $Pt-Zn_5(CO_3)_2(OH)_6$ prepared by heat-treatment at 180 °C for 12 hours.

Figure S8. SEM image of $Pt-Zn_5(CO_3)_2(OH)_6$ prepared by heat-treatment at 120 °C for 12 hours.

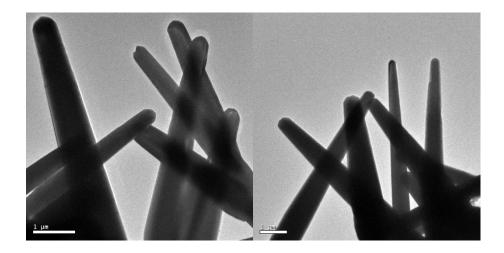
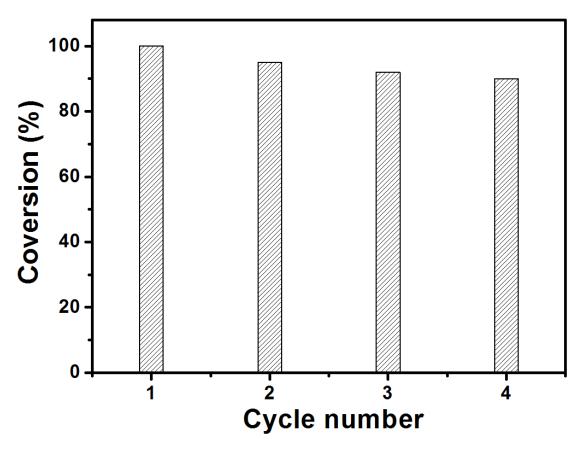



Figure S9. TEM images of ZnO nanorods.

Figure S10. the cycling test of Pt-ZnO nanoribbon on the catalytic reaction of Photocatalytic degradation of MO.