Supporting Materials

Syntheses, structures and photocatalytic properties of three coordination polymers based on 1,2-bis(1,2,4-triazol-4-

yl)ethane and benzenetricarboxylate

Yan-Fen Peng^{a,b}, Shan Zhao^a, Ke Li^a, Lu Liu^a, Bao-Long Li^{*,a}, Bing Wu^a

^aKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China. E-mail: libaolong@suda.edu.cn

^bDepartment of Material and Chemical Engineering, Chizhou University, Chizhou, Anhui, 247000, P.R. China.

		1			
Cu(1)-O(1)	1.970(5)	Cu(1)-O(5)#2	1.954(5)		
Cu(1)-O(7)	2.402(5)	Cu(1)-O(7)#1	1.943(5)		
Cu(1)-N(1)	1.951(6)	Cu(2)-O(2)	2.088(5)		
Cu(2)-O(4)#3	2.222(5)	Cu(2)-O(7)	1.922(5)		
Cu(2)-O(8)	1.944(5)	Cu(2)-N(2)#1	2.098(6)		
O(5)#2-Cu(1)-O(1)	94.9(2)	O(1)-Cu(1)-O(7)	103.40(19)		
O(7)#1-Cu(1)-O(1)	171.2(2)	N(1)-Cu(1)-O(1)	88.0(2)		
O(5)#2-Cu(1)-O(7)	78.69(19)	O(7)#1-Cu(1)-O(5)#2	89.3(2)		
N(1)-Cu(1)-O(5)#2	173.8(2)	N(1)-Cu(1)-O(7)	106.0(2)		
O(7)#1-Cu(1)-O(7)	84.94(19)	O(7)#1-Cu(1)-N(1)	87.1(2)		
O(2)-Cu(2)-O(4)#3	91.5(2)	O(7)-Cu(2)-O(2)	92.2(2)		
O(8)-Cu(2)-O(2)	84.4(2)	O(2)-Cu(2)-N(2)#1	168.6(2)		
O(7)-Cu(2)-O(4)#3	99.9(2)	O(8)-Cu(2)-O(4)#3	86.7(2)		
N(2)#1-Cu(2)-O(4)#3	99.9(2)	O(7)-Cu(2)-O(8)	172.7(2)		
O(7)-Cu(2)-N(2)#1	86.6(2)	O(8)-Cu(2)-N(2)#1	95.4(2)		
Cu(2)-O(7)-Cu(1)	94.53(19)	Cu(2)-O(7)-Cu(1)#1	124.6(3)		
Cu(1)#1-O(7)-Cu(1)	95.06(19)				
2					
Zn(1)-O(1)	2.102(6)	Zn(1)-O(4)#2	2.227(5)		
Zn(1)-O(7)	2.076(6)	Zn(1)-O(7)#1	2.085(6)		
Zn(1)-O(8)	2.087(6)	Zn(1)-N(1)	2.146(7)		
Zn(2)-O(2)#1	2.052(6)	Zn(2)-O(3)#3	2.062(6)		

Table S1 Seleted bond lengths and angles for 1, 2 and 3 (Å and °).

Zn(2)-O(7)	2.022(5)	Zn(2)-O(9) 2.165	
Zn(2)-N(2)	2.071(7)		
O(1)-Zn(1)-O(4)#2	87.9(2)	O(7)-Zn(1)-O(1)	174.9(2)
O(7)#1-Zn(1)-O(1)	92.8(2)	O(8)-Zn(1)-O(1)	83.1(2)
O(1)-Zn(1)-N(1)	92.1(2)	O(7)-Zn(1)-O(4)#2	92.9(2)
O(7)#1-Zn(1)-O(4)#2	83.9(2)	O(8)-Zn(1)-O(4)#2	87.1(2)
N(1)-Zn(1)-O(4)#2	173.1(2)	O(7)-Zn(1)-O(7)#1	82.3(2)
O(7)-Zn(1)-O(8)	102.0(2)	O(7)-Zn(1)-N(1)	87.8(2)
O(7)#1-Zn(1)-O(8)	170.3(2)	O(7)#1-Zn(1)-N(1)	102.9(2)
O(8)-Zn(1)-N(1)	86.1(2)	O(2)#1-Zn(2)-O(3)#3	87.2(2)
O(7)-Zn(2)-O(2)#1	94.1(2)	O(2)#1-Zn(2)-O(9)	85.3(2)
O(2)#1-Zn(2)-N(2)	164.9(3)	O(7)-Zn(2)-O(3)#3	99.7(2)
O(3)#3-Zn(2)-O(9)	87.7(2)	O(3)#3-Zn(2)-N(2)	105.4(2)
O(7)-Zn(2)-O(9)	172.5(2)	O(7)-Zn(2)-N(2)	92.0(2)
N(2)-Zn(2)-O(9)	86.8(3)		
		3	
Cd(1)-O(1)	2.487(4)	Cd(1)-O(2)	2.286(4)
Cd(1)-O(3)#2	2.277(4)	Cd(1)-O(4)#2	2.567(4)
Cd(1)-O(12)#1	2.269(4)	Cd(1)-N(1)	2.256(4)
Cd(2)-O(5)#2	2.351(4)	Cd(2)-O(13)	2.285(4)
Cd(2)-O(14)	2.251(4)	Cd(2)-O(15)	2.274(4)
Cd(2)-N(2)	2.354(4)	Cd(2)-N(4)	2.317(5)
Cd(3)-O(6)#2	2.229(4)	Cd(3)-O(7)	2.382(4)
Cd(3)-O(8)	2.419(4)	Cd(3)-O(10)#1	2.238(4)
Cd(3)-O(13)	2.524(4)	Cd(3)-N(5)	2.358(4)
O(2)-Cd(1)-O(1)	54.22(14)	O(3)#2-Cd(1)-O(1)	139.33(14)
O(1)-Cd(1)-O(4)#2	126.68(13)	O(12)#1-Cd(1)-O(1)	88.03(14)
N(1)-Cd(1)-O(1)	82.70(16)	O(3)#2-Cd(1)-O(2)	89.30(14)
O(2)-Cd(1)-O(4)#2	83.07(14)	O(12)#1-Cd(1)-O(2)	115.35(15)
N(1)-Cd(1)-O(2)	118.17(17)	O(3)#2-Cd(1)-O(4)#2	53.48(12)
O(12)#1-Cd(1)-	93.51(14)	N(1)-Cd(1)-O(3)#2	135.66(14)
O(3)#2			
O(12)#1-Cd(1)-	143.37(13)	N(1)-Cd(1)-O(4)#2	93.55(14)
O(4)#2			
N(1)-Cd(1)-O(12)#1	103.30(16)	O(13)-Cd(2)-O(5)#2	80.43(15)
O(14)-Cd(2)-O(5)#2	84.35(15)	O(15)-Cd(2)-O(5)#2	161.66(16)
O(5)#2-Cd(2)-N(2)	113.92(15)	N(4)-Cd(2)-O(5)#2	84.49(15)
O(14)-Cd(2)-O(13)	158.67(15)	O(15)-Cd(2)-O(13)	107.90(16)
O(13)-Cd(2)-N(2)	87.53(15)	O(13)-Cd(2)-N(4)	80.95(15)
O(14)-Cd(2)-O(15)	91.07(16)	O(14)-Cd(2)-N(2)	85.06(16)
O(14)-Cd(2)-N(4)	112.46(16)	O(15)-Cd(2)-N(2)	83.24(17)
O(15)-Cd(2)-N(4)	80.87(17)	N(4)-Cd(2)-N(2)	156.42(18)
O(6)#2-Cd(3)-O(7)	84.15(14)	O(6)#2-Cd(3)-O(8)	136.77(14)
O(6)#2-Cd(3)-	117.78(15)	O(6)#2-Cd(3)-O(13)	110.87(14)

O(10)#1			
O(6)#2-Cd(3)-N(5)	91.25(16)	O(7)-Cd(3)-O(8)	54.37(13)
O(10)#1-Cd(3)-O(7)	122.21(15)	O(7)-Cd(3)-O(13)	154.08(14)
N(5)-Cd(3)-O(7)	81.23(16)	O(10)#1-Cd(3)-O(8)	81.27(14)
O(8)-Cd(3)-O(13)	112.11(14)	N(5)-Cd(3)-O(8)	93.51(15)
O(10)#1-Cd(3)-O(13)	70.51(14)	O(10)#1-Cd(3)-N(5)	142.61(16)
N(5)-Cd(3)-O(13)	77.57(14)		

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z; #2 -x+2, y-1/2, - z+1/2; #3 -x+1, y-1/2, -z+1/2 for 1; #1 -x+1, -y+4, -z; #2 -x+1, -y+3, -z; #3 x+1, y+1, z for 2; #1 - x+1, -y+2, -z; #2 -x+1, -y+1, -z+1 for 3.

Table S2 Hydrogen b	onds for 1, 2 ar	nd 3 (Å and ^o).		
D-H-A	d(D-H)	d(H···A)	D(D···A)	<(DHA)
		1		
O(7)-H(1W) O(6) ⁱ	0.89(2)	1.87(3)	2.748(7)	167(7)
O(8)-H(2W)-O(9) ⁱ	0.877(19)	1.752(19)	2.621(9)	171(5)
O(8)-H(3W)-O(3) ⁱⁱ	0.89(2)	1.72(2)	2.606(7)	171(7)
O(9)-H(4W) O(6) ⁱ	0.91(2)	1.94(4)	2.640(9)	132(4)
O(9)-H(5W)-O(7)	0.91(2)	2.42(6)	3.067(9)	128(6)
		2		
O(7)-H(1W) O(5) ⁱ	0.90(2)	2.13(6)	2.875(8)	138(7)
O(8)-H(2W)-O(5) ⁱⁱ	0.91(2)	1.73(3)	2.609(8)	163(6)
O(8)-H(3W) O(3) ⁱ	0.90(2)	1.80(4)	2.627(8)	151(7)
O(9)-H(4W)-O(8) ⁱⁱⁱ	0.91(2)	2.35(7)	2.968(9)	125(6)
O(9)-H(5W)-O(10) ^{iv}	1.019(15)	2.520(16)	3.538(9)	177(6)
O(10)-H(6W)-O(8) ^v	0.90(2)	2.41(7)	3.098(10)	133(7)
O(10)-H(7W)-O(6)	0.90(2)	1.88(4)	2.751(10)	161(10)
O(11)-H(8W)-O(10)	0.90(2)	2.08(6)	2.918(12)	154(12)
O(11)-H(9W)-O(10)vi	0.90(2)	2.06(5)	2.895(13)	153(10)
		3		
O(13)-H(1W)-O(11) ⁱ	0.891(19)	1.92(3)	2.726(5)	149(5)
O(13)-H(2W)-O(17)	0.890(19)	1.78(3)	2.617(7)	156(6)
O(14)-H(3W)-O(16) ⁱⁱ	0.899(19)	1.84(2)	2.706(7)	161(5)
O(14)-H(4W)-O(4) ⁱⁱⁱ	0.886(19)	1.98(4)	2.732(6)	142(6)
O(15)-H(5W)O(3) ^{iv}	0.967(17)	2.069(19)	2.733(6)	124.2(16)
O(15)-H(6W)O(9) ^v	0.86(2)	2.05(4)	2.627(6)	123(4)
O(16)-H(7W)O(4)	0.89(2)	1.98(2)	2.868(6)	173(7)
O(16)-H(8W)O(3) ⁱⁱⁱ	0.89(2)	2.05(2)	2.921(6)	165(6)
O(17)-H(9W)O(8) ^v	0.89(2)	2.40(2)	2.866(7)	1113(2)
O(17)-H(10W)O(18)	0.90(2)	1.93(3)	2.785(9)	158(6)
O(18)-H(11W)O(10) ⁱ	0.90(2)	2.03(3)	2.896(7)	162(5)
O(18)-H(12W)O(9)	0.89(2)	2.13(3)	3.011(7)	168(7)

Symmetry transformations used to generate equivalent atoms: i -x+1, y-1/2,- z+1/2; ii -x+2, y-1/2, -z+1/2 for 1; i -x+1, -y+3, -z; ii x+1, y+1, z; iii x, y+1, z; iv x+1, y+2, z; v x-1, y-1, z; vi -x-1, -y+1, -z-1 for 2; i -x+1, -y+2, -z; ii x+1, y, z; iii -x+1, -y+1, -z+1; iv -x+2, -y+1, -z+1; v -x+2, -y+2, -z for 3.

Fig. S1 The coordination environment of Cu1(II) atom in 1.

Fig. S2 The coordination environment of Cu2(II) atom in 1.

Fig. S3 The coordination environment of Zn(II) atoms in 2.

Fig. S4 The coordination environment of Cd(II) atoms in 3.

Fig. S5 PXRD patterns of the measured and simulated diagram from single crystal data of 1.

Fig. S6 PXRD patterns of the measured and simulated diagram from single crystal data of 2.

Fig. S7 PXRD patterns of the measured and simulated diagram from single crystal data of 3.

Fig. S8 The excitation spectra of 2 and 3 in the solid state at room temperature.