Is "configurational polymorphism" a valid concept? Structures of two forms of 4-hydroxypiperidine with different NH configurations

Cindy Döring, Christian Näther, Inke Jess, Kerstin Ibrom and Peter G. Jones

Supplementary Material

Compound 1 = 4-hydroxypiperidine

Figure S1: Experimental X-ray powder pattern of the commercial available compound 1 (top) and calculated powder pattern for form 1t (bottom).

Figure S2: DSC heating and cooling curves for form **1t** at 3°C/min; given are the peak (T_p) and onset (T_o) temperatures in °C and the enthalpy ΔH in kJ/mol.

Run	Onset temperature (T _o)	Peak temperature (T _o)	Heat of fusion
1	89.5	90.3 °C	17.5 kJ/mol
2	89.3	90.1°C	19.1 kJ/mol
3	89.7	90.5 °C	18.5 kJ/mol
4	89.6	90.4 °C	18.1 kJ/mol
Average	89.5 °C	90.3 °C	18.3 kJ/mol

Table S1: Melting temperatures and enthalpy of fusion for various DSC runs measured at 10°C/min.

Figure S3: IR spectra of form 1t (black) and the amorphous residue obtained after cooling the melt of form 1t (red).

Figure S4: X-ray powder patterns of the residues of **1** obtained from various solvents. Some of these patterns show a marked texture.

Figure S5: DTA, TG and DTG curves for the residue of 1 obtained from 2-butanol.

Figure S6: Experimental X-ray powder pattern of the residue obtained after solvent removal from the 2-butanol solvate (top) and calculated powder pattern for form **1t** (bottom).

Figure S7: DTA, TG and DTG curve for the hydrochloride of 4-hydroxypiperidine.

Figure S8: Microscopic images at various temperatures obtained by thermomicroscopy with form **1o** (left) and form **1t** (right).

Figure S9: Microscopic images of selected crystals of 2 (left), 10 (centre) and 1t (right).

Packing analyses of compounds 2, 3 and 4

Compound 2

All three classical H bond donors are involved in H bonds with the chloride as acceptor (Table S2, Fig. S10). The extended packing is a layer structure parallel to the *ac* plane. Each layer involves only translation symmetry, and there are thus four layers per cell (at $y \approx 1/8$, 3/8, 5/8, 7/8). The layers consist of rings with the graph set R³₆(20).

Table S2.	Classical hydrogen	bonds [Å	and $^{\circ}$] for 2 .
-----------	--------------------	----------	---------------------------------

D–H 🗆 A	d(D–H)	d(H□A)	$d(D \Box A)$	<(DHA)
01–H03□Cl1	0.832(18)	2.333(18)	3.1613(10)	173.6(16)
$N1-H01 \square C11#1$ $N1-H02 \square C11#2$	0.880(16) 0.900(16)	2.273(16) 2.262(16)	3.1427(10) 3.1524(10)	169.7(14) 170.2(13)

Symmetry transformations used to generate equivalent atoms:

#1 *x*+1, *y*, *z*-1; #2 *x*, *y*, *z*-1.

Figure S10. Packing diagram of compound 2 viewed parallel to the *b* axis in the region $y \approx 1/8$. Hydrogen bonds are indicated by thick dashed lines.

Compound 3

Both OH groups act as H bond donors and acceptors to form infinite chains $\Box O-H\Box O-H\Box O-H\Box$ parallel to the *b* axis (Table S3, Fig. S11). The operator is the 2₁ screw axis in the same direction. The extended packing is a layer structure parallel to the *bc* plane. The layers consist of rings with the graph set R_4^4 (28).

Table S3.	Classical hydrogen	bonds [Å and °] for compound 3 .

D–H…A	d(D–H)	d(H□A)	$d(D\Box A)$	<(DHA)	
O1-H01 O2#1	0.86(3)	1.91(3)	2.768(2)	170(3)	
O2-H02 O1#2	0.85(3)	1.93(3)	2.783(2)	173(3)	

Symmetry transformations used to generate equivalent atoms:

#1 -*x*+1, -*y*+1, *z*+1/2; #2 -*x*+1, -*y*+2, *z*-1/2.

Figure S11. Packing diagram of compound 3 viewed parallel to the *a* axis. Hydrogen bonds are indicated by thick dashed lines.

Compound 4

The packing of compound **4** is extremely complicated. There are six independent residues and twelve independent classical H bonds (Tab. S4). Because the structure is only of peripheral interest to the main topic of polymorphism, we do not attempt to present packing diagrams.

D–H…A	d(D–H)	d(H□A)	$d(D\Box A)$	<(DHA)	
N11–H01 🗆 O41#1	0.915(15)	1.791(16)	2.705(3)	176(3)	
N11-H02 \cop O51#1	0.935(15)	1.743(16)	2.667(3)	169(2)	
N21-H03 🗆 O52	0.929(16)	1.865(18)	2.763(3)	162(3)	
N21-H04 O42	0.942(15)	1.721(16)	2.652(3)	170(2)	
N31-H05 062	0.931(16)	1.783(16)	2.711(3)	175(3)	
N31-H06 O61#2	0.936(17)	1.82(2)	2.716(3)	160(4)	
O1–H07□O52#3	0.84	1.88	2.718(3)	174.0	
O2–H08□O62#4	0.84	1.98	2.799(3)	166.3	
O3–H09□O6#5	0.84	1.93	2.755(3)	167.2	
O4–H010□O1	0.84	2.08	2.890(3)	161.8	
O5–H011□O61#6	0.84	1.94	2.778(3)	173.7	
O6-H012 041#5	0.84	1.82	2.657(3)	175.6	

Table S4. Classical hydrogen bonds [Å and °] for 4.

Symmetry transformations used to generate equivalent atoms:

#1 *x*-1 *,y ,z*; #2 -*x*+2, -*y*, -*z*+1; #3 -*x*, -*y*+1, -*z*+2; #4 -*x*+1, -*y*+1, -*z*+1; #5 -*x*+1, -*y*, -*z*+1; #6 *x*, *y*+1, *z*.