Supplementary Data

Thermochemical properties are given as differences (ΔE) in calculated DFT-BP86 absolute electronic energies (E_{abs}) . No vertical energy differences are quoted: all ΔE are 'adiabatic' in the sense that they are calculated from optimised geometry to optimised geometry. The sign convention is that a positive $\Delta E(X)$ corresponds to an endothermic reaction $X \rightarrow Y$; X is then stable with respect to Y. As an example, Na₄O is stable with respect to loss of one sodium atom:

$$Na_4O \rightarrow Na_3O + Na, \Delta E = +149 \text{ kJ/mol}$$

Therefore the sodium abstraction energy of Na₄O is $\Delta E_{\text{Na}} = +149 \text{ kJ/mol}$. ΔE_{Na}^{i} and ΔE_{Na} refer to abstraction energies for inner and outer shell sodium respectively. $\Delta E_{\text{Na}}^{io}$ is the inner \rightarrow outer isomerisation energy. ΔE_{ox} is the energy gained on oxidation, that is, the binding energy relative to an isolated neutral sodium cluster and neutral O₂.

Basis Sets

Sodium: Single Valence Polarisation (SVP): (10s6p) / [4s2p]

Oxygen: Single Valence Polarisation (SVP): (7s4p1d) / [3s2p1d]

Oxygen: Single Valence Polarisation with diffuse p on oxygen (SVP+): (7s5p1d) / [3s3p1d] from SVP plus $\eta_p=0.06$

For SVP basis sets see: A.Schäfer, H.Horn & R.Ahlrichs, J. Chem. Phys., 1992, 97, 2571.