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1 Theory

We give first an outline of LF theory, to set the notation for later sections, following
broadly the approach of Schäffer and Jørgensen [1]. We quote some standard formulae
explicitly so that the development presented here may be relatively self-contained and easily
reproduced by the interested researcher. One is interested in the effect of a set of ligands
on the d orbitals of the central, transition-metal atom. One may approach the problem by
postulating a perturbing potential vLF due to the ligands, and calculating the effect of this
potential on the energies of the d orbitals by first-order, degenerate perturbation theory.
This requires diagonalisation of the (symmetric) matrix

V LF

ab ≡ 〈da|vLF|db〉 (1)

(a, b = 1, 2, 3, 4, 5) where each orbital |da〉 consists of a radial function multiplied by the
usual real, l=2, spherical harmonics di defined in terms of the standard, complex ones as
follows:

dz2 ≡ Y2 0(r̂) =
1

2

√
5

4π
(3z2 − r2)/r2

dxz ≡ − 1√
2
(Y2 1(r̂)− Y2−1(r̂)) =

√
15

4π
(xz)/r2

dyz ≡ i
1√
2
(Y2 1(r̂) + Y2−1(r̂)) =

√
15

4π
(yz)/r2

dx2−y2 ≡ 1√
2
(Y2 2(r̂) + Y2−2(r̂)) =

1
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√
15

4π
(x2 − y2)/r2
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dxy ≡ −i 1√
2
(Y2 2(r̂)− Y2−2(r̂)) =

√
15

4π
(xy)/r2 . (2)

These angular parts may therefore be written
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Y2 2(r̂)
Y2 1(r̂)
Y2 0(r̂)
Y2−1(r̂)
Y2−2(r̂)

 ≡ Cy

(3)
and we note that the matrix C here defined is unitary, i.e. C†C = I.

There are two key approximations in the version of LF theory used here. Firstly, each
ligand contributes linearly to the potential vLF; i.e.

vLF =
∑
λ

vLF

λ , (4)

where the index λ runs through the ligands. Secondly, in the local frame of a particular
ligand λ (where the local zλ-axis is along the metal–ligand axis pointing away from the
metal atom), the matrix (V LF

λ )ab ≡ 〈dλa|vLF
λ |dλb〉 is diagonal. The diagonal elements are

taken as parameters

〈dλ,z2|vLF

λ |dλ,z2〉 ≡ eσ(λ) ≡ e1(λ)

〈dλ,xz|vLF

λ |dλ,xz〉 ≡ eπx(λ) ≡ e2(λ)

〈dλ,yz|vLF

λ |dλ,yz〉 ≡ eπy(λ) ≡ e3(λ)

〈dλ,x2−y2|vLF

λ |dλ,x2−y2〉 ≡ eδx2−y2(λ) ≡ e4(λ)

〈dλ,xy|vLF

λ |dλ,xy〉 ≡ eδxy(λ) ≡ e5(λ) , (5)

which within the context of the LFMM calculations will be assumed to be transferable for
a given metal–ligand combination.

To find an expression for the LF matrix (1) we must consider the rotation of a local
ligand frame (and the associated dλ,a) into the global molecular frame. This may be done
with the usual spherical harmonic rotation matrices [2]

Dj

m′m
(αβγ) = e−im′α dj

m′m
(β) e−imγ , (6)

where the Euler angles α, β and γ relate to a rotation of the coordinate system performed
in the following manner:
(1) a rotation made about the z-axis through an angle α; the new coordinate axes are x′,
y′, z′;
(2) a rotation made about the y′-axis through an angle β; the new coordinate axes are x′′,
y′′, z′′;
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(3) a rotation made about the z′′-axis through an angle γ; the new (final) coordinate axes
are x′′′, y′′′, z′′′.

The rotation matrices for the Euler angle β (pertaining to rotation about the interme-
diate y′-axis) have the symmetries

dj

m′m
(β) = dj

mm′ (−β) = (−1)m′−mdj

mm′ (β) = (−1)m′−mdj

−m′ ,−m
(β) . (7)

and were given explicitly by Wigner as follows:

dj

m′m
(β) = [(j +m)!(j −m)!(j +m′)!(j −m′)!]1/2

×
∑

t

(−1)t/[(j −m′ − t)!(j +m− t)!(t+m′ −m)!t!]

×
(

cos
β

2

)2j+m−m′−2t(
− sin

β

2

)m′−m+2t

. (8)

For the case l = 2, of interest to us here, Table 1 gives the formulae for these matrix
elements.

Table 1: Explicit form of d2
m′m

(β)

m 2 1 0
m

′

2 [1 + cos(β)]2/4 − sin(β)[1 + cos(β)]/2
√

3/8 sin2(β)

1 sin(β)[1 + cos(β)]/2 [2 cos2(β) + cos(β)− 1]/2 −
√

3/2 sin(β) cos(β)

0
√

3/8 sin2(β)
√

3/2 sin(β) cos(β) [3 cos2(β)− 1]/2

−1 sin(β)[1− cos(β)]/2 −[2 cos2(β)− cos(β)− 1]/2
√

3/2 sin(β) cos(β)

−2 [1− cos(β)]2/4 sin(β)[1− cos(β)]/2
√

3/8 sin2(β)

m −1 −2
m

′

2 − sin(β)[1− cos(β)]/2 [1− cos(β)]2/4
1 −[2 cos2(β)− cos(β)− 1]/2 − sin(β)[1− cos(β)]/2

0 −
√

3/2 sin(β) cos(β)
√

3/8 sin2(β)

−1 [2 cos2(β) + cos(β)− 1]/2 − sin(β)[1 + cos(β)]/2
−2 sin(β)[1 + cos(β)]/2 [1 + cos(β)]2/4

Thus a spherical harmonic Yl m(r̂) in the original coordinate system will become, under
this rotation R, carried with the coordinate frame rotation, the new function

RYl m(r̂) =
∑
m′
Dl

m
′
m(αβγ)Yl m′(r̂) (9)
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of the old coordinates.
Returning to our LF development we must first specify the direction of the xλ-axis,

which we take to point away from the global z-axis. Thus, if the position of the ligand has
polar coordinates r, θ and φ in the global frame, the Euler angles of the required coordinate
rotation may be taken to be

α = 0 , β = −θ , γ = −φ . (10)

With these definitions the spherical harmonics (yλ) in the local frame are related to those
(y) in the global frame by

yT = yλ
TDλ (11)

(where we have expressed Eqn. 9 in an obvious matrix form) and the matrix elements of
Dλ are given by (6) and Tab. 1 in the matrix sense of the latter. Likewise we may therefore
write

dλ
T ≡ dTFλ (12)

so that, using (3), we find that
Fλ = C∗Dλ

†CT . (13)

Therefore,

Eλ,ab ≡ ea(λ)δab = 〈dλa|vLF

λ |dλb〉 =
∑

c

∑
d

F ∗
λ,ca〈dc|vLF

λ |dd〉Fλ,db . (14)

And finally,
VLF =

∑
λ

FλEλFλ
† . (15)

In the case of solely σ bonding, the parameter e1 is the only non-zero one for all ligands,
so that (15) becomes

V LF

ab =
∑
λ

Fλ,a1eσ(λ)Fλ,b1
∗ . (16)

The matrix elements Fλ,ab may be calculated explicitly from the above definitions (and
turn out to be real), although the calculation is tedious. We have made use of the symbolic
algebra package Maple to check the calculations. We quote here the results for Fλ,a1:

Fλ,11 = (1/2)(3 cos2 θ − 1)

Fλ,21 =
√

3 sin θ cos θ cosφ

Fλ,31 =
√

3 sin θ cos θ sinφ

Fλ,41 = (1/2)
√

3(1− cos2 θ) cos 2φ

Fλ,51 = (1/2)
√

3(1− cos2 θ) sin 2φ , (17)

which correspond exactly to those of Schäffer and Jørgensen [1]. It is interesting to note
from (17) and (2) that

Fλ,a1 =
√

4π/5 da(θ, φ) . (18)
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To include the effect of non-zero parameters, eπx(λ) and eπy(λ), one must take into
account the geometrical arrangement of the subsidiary atoms bonded to the main π bonding
ligand atom. If these two parameters are equal, then our analysis above suffices to give the
appropriate matrix elements Fλ,ab. If not, then we must include an extra rotation of the
local ligand frame. The local frame is now defined so that its x- and y- axes are appropriate
for the definitions of eπx(λ) and eπy(λ) separately. In particular, for a planar ligand group,
the local xz-plane would be in that plane. A new angle ψ (see Ref. [3]) is now the angle
between the former local x-axis from above and the new local x-axis.

To find the new expression for the LF matrix (1) our previous analysis applies, except
for the rotation that we perform. The new Euler angles of the required coordinate rotation
are now

α = −ψ , β = −θ , γ = −φ . (19)

Where both σ and π bonding are present, (15) becomes

V LF

ab =
∑
λ

[Fλ,a1eσ(λ)Fλ,b1
∗ + Fλ,a2eπx(λ)Fλ,b2

∗ + Fλ,a3eπy(λ)Fλ,b3
∗] . (20)

The matrix elements Fλ,ab may be calculated explicitly as before, with the new rotations,
and checked with Maple. The results for Fλ,a1 are unaltered. Those for Fλ,a2 and Fλ,a3 are:

Fλ,12 = −
√

3 sin θ cos θ cosψ

Fλ,22 = cos 2θ cosφ cosψ − cos θ sinφ sinψ

Fλ,32 = cos 2θ sinφ cosψ + cos θ cosφ sinψ

Fλ,42 = sin θ cos θ cos 2φ cosψ − sin θ sin 2φ sinψ

Fλ,52 = sin θ cos θ sin 2φ cosψ + sin θ cos 2φ sinψ , (21)

and

Fλ,13 =
√

3 sin θ cos θ sinψ

Fλ,23 = − cos θ sinφ cosψ − cos 2θ cosφ sinψ

Fλ,33 = cos θ cosφ cosψ − cos 2θ sinφ sinψ

Fλ,43 = − sin θ sin 2φ cosψ − sin θ cos θ cos 2φ sinψ

Fλ,53 = sin θ cos 2φ cosψ − sin θ cos θ sin 2φ sinψ , (22)

which correspond exactly to those of Figgis and Hitchman ([3], page 61).

1.1 The CLF Stabilisation Energy and the Crystal Field Barycen-
tre

Having prepared the matrix VLF according to the foregoing algebra, one must diagonalise
it to find the perturbed energy eigenvalue shifts. Since it is a symmetric matrix, the
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eigenvectors can be chosen to form a complete, orthonormal set, the eigenvalues are real,
and the diagonalisation may be performed with an orthogonal matrix, Q (such that QTQ =
I). Therefore, we have

W = QVLFQT (23)

where the diagonal matrix W is defined in terms of the energy eigenvalues wa of VLF (with
the requirement that w1 ≤ w2 ≤ w3 ≤ w4 ≤ w5) by

Wab ≡ waδab . (24)

We note that the matrix QT may be taken to have its columns as the orthonormal eigen-
vectors of VLF.

The main quantity of interest is the CLF stabilisation energy, E , which is a sum of
the energy eigenvalues, wa, weighted by constants, na, depending on the occupation of the
levels. Thus,

E ≡
∑
a

nawa . (25)

It is more useful for further development to write this last equation as the trace of a matrix
product

E ≡ tr(NW) , (26)

where the constant, diagonal matrix N is given by

Nab ≡ naδab . (27)

At this point we recognise that the CLF (or AOM) and crystal field theory (CFT)
barycentres are different. The original tensor operator mathematics employed Gerloch’s
formalism which automatically gave the CFT result. Here, our use of the S-J approach
means that the sum of the d-orbital energies is not zero. Rather, it is the sum of the CLF
parameter values. We envisage that for organometallic species, this will be the preferred
reference point for the molecular orbital stabilisation energy (MOSE) as defined by Burdett.
For Werner-type complexes where the CFT barycentre is more usual, we can easily convert
the barycentre by replacing the matrix W above in (26) with a barycentred version WB

defined by

WB ≡ W − 1

5
(trW)I . (28)

For our development below we wish to keep to the previous definition of W. This may be
achieved in the following manner. Note that now

E = tr(NWB)

= tr(N(W − 1

5
(trW)I))

= tr(NW)− 1

5
tr(W)tr(N)

= tr((N− 1

5
(trN)I)W)

= tr(NBW) , (29)
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where

NB ≡ N− 1

5
(trN)I . (30)

1.2 The Inclusion of d–s Mixing

In certain circumstances, and most famously for square-planar complexes, it is known that
the ligand field gives rise to an interaction between the nd and (n + 1)s orbitals [4, 5]. In
this case it is necessary to include the (n + 1)s orbital in the perturbation procedure. An
important point to note is that the d–s-interaction that we wish to take into account arises
from second order perturbation theory, a point made by Riley [7] in his usefully explicit
treatment.

In this work we proceed in a direct manner by considering the full, perturbed Hamilto-
nian, h ≡ h0 + vLF; where the unperturbed Hamiltonian, h0, is spherically symmetric, and
the nd and (n+1)s orbitals are eigenstates of h0. Our task is then to diagonalise the matrix
of h expressed in the eigenstates of h0. The assumption that vLF is a small perturbation
which mixes the nd and (n + 1)s orbitals, but no others with them, allows us to restrict
our attention to the six-dimensional subspace of these orbitals. Thus, we must diagonalise
the 6× 6 matrix

Hαβ ≡ 〈uα|h|uβ〉 (31)

(α, β = 0, 1, 2, 3, 4, 5), where |u0〉 ≡ |s〉 and |ua〉 ≡ |da〉 for a = 1, . . . , 5. Now we may
subtract from this 6 × 6 Hamiltonian matrix any multiple of the identity matrix without
affecting the diagonalisation process. Therefore, let us define the 6× 6 LF matrix

V
(ds)
αβ ≡ Hαβ − E

(0)
d δαβ , (32)

where E
(0)
d ≡ 〈da|h0|da〉 is the unperturbed (degenerate) d orbital energy (and for the

remainder of this work we drop the LF label). The eigenvectors of V(ds) are the same as

those of H, while the eigenvalues are the energy shifts relative to E
(0)
d that we seek.

We may write the matrix V(ds) in partitioned form as

V(ds) =

(
∆ + ξ cT

c V

)
, (33)

where ∆ ≡ E(0)
s − E

(0)
d , E(0)

s ≡ 〈s|h0|s〉, ξ ≡ 〈s|v|s〉, V is our 5 × 5 LF matrix from (1),
and c is a 5-dimensional vector with elements

ca ≡ 〈da|v|s〉 . (34)

A non-trivial d–s hybridisation means a non-zero c, so that we are obliged to consider the
full 6× 6 problem. However, the parameters ∆ and ξ are usually not available separately.
We may nonetheless proceed by considering directly the 6× 6 eigenvalue problem(

∆ + ξ cT

c V

)(
µ
m

)
= ε

(
µ
m

)
, (35)
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where we note that neither the scalar µ nor the vector m can be zero for a non-trivial
eigenvector, since this would imply that the vector c were zero, contradicting our assump-
tion of some d–s interaction. Therefore we may eliminate µ between the scalar and vector
equations of (35) to obtain

Vm− c

(
cTm

∆ + ξ − ε

)
= εm . (36)

If we assume that the original d–s energy difference ∆ is much greater than the difference
of perturbation shifts ξ − ε, then the last equation becomes approximately(

V −
(

ccT

∆

))
m = εm , (37)

which is an eigenvalue equation for the 5× 5 matrix

Ṽ ≡ V −
(

ccT

∆

)
, (38)

which we take to be our new LF matrix in the case of d–s mixing.
The new term in the LF matrix may be evaluated as follows. Note first from (4,34)

that
ca =

∑
λ

cλ,a , (39)

where cλ,a ≡ 〈da|vλ|s〉. Using (12) and noting the rotational symmetry of the s orbital, we
find that ∑

b

F ∗
λ,bacλ,b = 〈dλ,a|vλ|sλ〉 . (40)

This may be inverted to give

cλ,a =
∑

b

Fλ,ab〈dλ,b|vλ|sλ〉 . (41)

From considerations of local symmetry, only the term 〈dλ,z2|vλ|sλ〉 is significant, so that

cλ,a = Fλ,a1〈dλ,1|vλ|sλ〉 . (42)

Defining the parameter eds(λ) in the usual way

eds(λ) ≡ e0(λ) ≡ 〈dλ,1|vλ|sλ〉2/∆ , (43)

and setting

ba ≡
∑
λ

Fλ,a1

√
eds(λ) , (44)

leads finally to
Ṽ = V − bbT . (45)
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1.3 Evaluation of the Ligand Field Matrix

The key to the practical implementation of the ligand field algebra is its expression in
terms of the Cartesian coordinates of the atoms of the molecule. We need consider only
those atoms involved in generating the CLFSE. Thus, we start with the central transition
metal atom having position vector, ~x(0), with components, x

(0)
i , for i = 1, 2, 3. Then

we have the L ligand atoms directly bonded to the metal, with position vectors ~x(λ), for
λ = 1, 2, . . . , L. Finally, we have possible subsidiary atoms bonded to the ligand atoms.
So for main ligand atom λ we have Kλ subsidiary atoms, where Kλ ≥ 0. In this work we
consider no more than two subsidiary atoms, whose positions determine the local coordinate
frame for asymmetric π bonding. In practice, the maximum number of subsidiary atoms
is three as in, for example, phosphine ligands, PR3. In these cases, there is local C3

symmetry and we consider the π bonding to be cylindrical and thus equivalent to the case
of no subsidiary atoms. The position vectors of the subsidiary atoms we write as ~x(λκ), for
κ = 1, ..., Kλ.

The coefficients in the LF matrix are given, of course, in terms of relative position
vectors. So we define therefore

~r(λ) ≡ ~x(λ) − ~x(0) ,

~s(λ) ≡ ~x(λ1) − ~x(λ) (if it exists) ,

~t(λ) ≡ ~x(λ2) − ~x(λ) (if it exists) . (46)

We consider separately the terms in the ligand field matrix (taken straightforwardly from
(20) and (45))

V = Vσ + Vπx + Vπy − bbT . (47)

The first term may be written, using (20) with (2) and (18), as

V σ
ab =

∑
λ

G(σ)
a (~r(λ))

[
eσ(λ)

r(λ)4

]
G

(σ)
b (~r(λ)) , (48)

and the G(σ)
a (~r) are defined by

G
(σ)
1 (~r) ≡ 1

2
(2z2 − x2 − y2)

G
(σ)
2 (~r) ≡

√
3(xz)

G
(σ)
3 (~r) ≡

√
3(yz)

G
(σ)
4 (~r) ≡ 1

2

√
3(x2 − y2)

G
(σ)
5 (~r) ≡

√
3(xy) . (49)

(For ease of reading the formulae, we have used (x, y, z) as the components of ~r, instead of
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(r1, r2, r3).) The vector b in the d–s mixing term of (45) may be now written as

ba ≡
∑
λ

G(σ)
a (~r(λ))


√
eds(λ)

r(λ)2

 . (50)

The advantages of writing the terms of the ligand field matrix in this way become apparent
when we come to taking the derivative of the matrix. In particular, the quantities G(σ)

a (~r)
are simple polynomials in x, y and z, and the expressions in square brackets are purely
functions of the magnitude r of the vector ~r.

The situation becomes more complicated when we come to consider the π bonding
terms. Here we must take into account several different cases. Furthermore, we may have
different cases for each ligand λ. Thus we must consider separate expressions for each
Vπx(λ) and Vπy(λ) (defined in an obvious way).

The simplest case is that of cylindrical π bonding for which we need consider no sub-
sidiary ligand atoms. We can thus set the angle ψ arbitrarily to zero. If we now define

ρ(λ) ≡
√
r
(λ) 2
1 + r

(λ) 2
2 =

√
x(λ) 2 + y(λ) 2 , (51)

then from (21) and (22) we can derive

V
πx(λ)
ab = G(πx)

a (~r(λ))

[
eπx(λ)

r(λ)4

](
1

ρ(λ)2

)
G

(πx)
b (~r(λ)) , (52)

and

V
πy(λ)
ab = G(πy)

a (~r(λ))

[
eπy(λ)

r(λ)2

](
1

ρ(λ)2

)
G

(πy)
b (~r(λ)) , (53)

where G(πx)
a (~r) and G(πy)

a (~r) are defined by

G
(πx)
1 (~r) ≡ −

√
3(x2 + y2)z G

(πy)
1 (~r) ≡ 0

G
(πx)
2 (~r) ≡ x(z2 − x2 − y2) G

(πy)
2 (~r) ≡ −yz

G
(πx)
3 (~r) ≡ y(z2 − x2 − y2) G

(πy)
3 (~r) ≡ xz

G
(πx)
4 (~r) ≡ z(x2 − y2) G

(πy)
4 (~r) ≡ −2xy

G
(πx)
5 (~r) ≡ 2xyz G

(πy)
5 (~r) ≡ x2 − y2

(54)

The next possibility is that of one subsidiary atom. Here we take the local xz-plane to
be that determined by the metal, ligand donor atom and subsidiary atom, such that the
local x-axis is given by the projection of the ligand to subsidiary atom vector, ~s(λ), on to
the plane perpendicular to the metal to ligand vector, ~r(λ). Defining

σ(λ) ≡
√
s(λ)2r(λ)2 − (~s(λ) · ~r(λ))2 (55)

we find that

V
πx(λ)
ab =

(
~g(x)

a (~r(λ)) · ~s(λ)
) [eπx(λ)

r(λ)4

] (
1

σ(λ)2

) (
~g

(x)
b (~r(λ)) · ~s(λ)

)
, (56)
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and

V
πy(λ)
ab =

(
~g(y)

a (~r(λ)) · ~s(λ)
) [eπy(λ)

r(λ)2

] (
1

σ(λ)2

) (
~g

(y)
b (~r(λ)) · ~s(λ)

)
, (57)

where the components of ~g(x)
a (~r) are given in Table 2, and those of ~g(y)

a (~r) in Table 3.

Table 2: Vector components of ~g(x)
a (~r)

a g
(x)
a,1(~r) g

(x)
a,2(~r) g

(x)
a,3(~r)

1 −
√

3xz2 −
√

3yz2
√

3z(x2 + y2)
2 z(z2 − x2 + y2) −2xyz x(x2 + y2 − z2)
3 −2xyz z(x2 − y2 + z2) y(x2 + y2 − z2)
4 x(2y2 + z2) −y(2x2 + z2) −z(x2 − y2)
5 y(z2 − x2 + y2) x(x2 − y2 + z2) −2xyz

Table 3: Vector components of ~g(y)
a (~r)

a g
(y)
a,1(~r) g

(y)
a,2(~r) g

(y)
a,3(~r)

1 −
√

3yz
√

3xz 0
2 −xy x2 − z2 yz
3 z2 − y2 xy −xz
4 −yz −xz 2xy
5 xz −yz y2 − x2

Finally, we have the case of two subsidiary atoms. Here we define the local x-axis as
being the intersection of the plane of the ligand donor atom and the subsidiary atoms (i.e.
that containing ~s(λ) and ~t(λ)) with the plane perpendicular to ~r(λ). Thus, defining

τ (λ) ≡
√

(~s(λ) × ~t(λ))2r(λ)2 − ((~s(λ) × ~t(λ)) · ~r(λ))2 , (58)

we find that

V
πx(λ)
ab =

(
~h(x)

a (~r(λ)) · (~s(λ) × ~t(λ))
) [eπx(λ)

r(λ)2

] (
1

τ (λ)2

) (
~h

(x)
b (~r(λ)) · (~s(λ) × ~t(λ))

)
(59)

and

V
πy(λ)
ab =

(
~h(y)

a (~r(λ)) · (~s(λ) × ~t(λ))
) [eπy(λ)

r(λ)4

] (
1

τ (λ)2

) (
~h

(y)
b (~r(λ)) · (~s(λ) × ~t(λ))

)
, (60)

where
~h(x)

a (~r) ≡ ~g(y)
a (~r) (61)

and
~h(y)

a (~r) ≡ −~g(x)
a (~r) . (62)
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1.4 Degenerate Cases

It is clear from the expressions (48), (50), (52), (53), (56), (57), (59) and (60) for the parts
of the ligand field matrix, that there may be problems when quantities in the denominators
become zero. Firstly, in all these expressions, the case r(λ) → 0 is a singularity. However,
we may ignore this possibility in the molecular mechanics context since it corresponds to
the ligand hitting the metal atom. This would normally be ruled out by the corresponding
large bond stretch energy term.

Potentially more serious is the case where ρ(λ) → 0 in (52) and (53), corresponding to the
ligand atom lying along the global z-axis, an entirely possible and acceptable occurrence.
We may however remove this singularity by expanding the sum V

πx(λ)
ab + V

πy(λ)
ab in full,

noting that we must have eπx(λ) = eπy(λ) ≡ eπ(λ), to obtain

V
πx(λ)
ab + V

πy(λ)
ab =

[
eπ(λ)

r(λ)4

]
Γ

π(λ0)
ab , (63)

where the matrix Γπ(λ0) is given by

Γπ(λ0) ≡


3(x2 + y2)z2 −

√
3xz(z2 − x2 − y2) −

√
3yz(z2 − x2 − y2)

−
√

3xz(z2 − x2 − y2) (x2 − z2)2 + y2(x2 + z2) xy(x2 + y2 − 3z2)

−
√

3yz(z2 − x2 − y2) xy(x2 + y2 − 3z2) (y2 − z2)2 + x2(y2 + z2)

−
√

3z2(x2 − y2) xz(z2 − x2 + 3y2) yz(y2 − z2 − 3x2)

−2
√

3xyz2 yz(z2 − 3x2 + y2) xz(z2 + x2 − 3y2)

−
√

3z2(x2 − y2) −2
√

3xyz2

xz(z2 − x2 + 3y2) yz(z2 − 3x2 + y2)
yz(y2 − z2 − 3x2) xz(z2 + x2 − 3y2)

4x2y2 + z2(x2 + y2) −2xy(x2 − y2)
−2xy(x2 − y2) (x2 − y2)2 + z2(x2 + y2)

 . (64)

Setting x, y → 0 in this last equation leads us to the result that

Vπx(λ) + Vπy(λ) → eπ(λ)


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 , (65)

as one might have expected from the local-frame definition (5) of the ligand field parameters.
In the case of one subsidiary atom, the possibility that σ(λ) → 0 corresponds to this

atom being collinear with the metal and ligand donor atom. While this is always possible
in a real molecular geometry, our assumption that we have non-cylindrical π bonding (i.e.
eπx(λ) 6= eπy(λ)) to begin with, suggests that it would be unlikely for the metal–ligand–
subsidiary atom angle to straighten out. However, in a molecular mechanics simulation
there would have to be an explicit angular potential included to resist this possibility.
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Similarly, in the case of two subsidiary atoms, the possibility that τ (λ) → 0 corre-
sponds to the three-atom ligand plane becoming perpendicular to the metal–ligand di-
rection. Again this is a possible geometry in real molecules. Our π bonding model is
inappropriate in this eventuality, it being intended more for the case where the metal and
the three atoms of the ligand are nearly coplanar, with the assumption that other, angular
potentials would tend to keep it nearly so.

1.5 Analytic First Derivatives of the Ligand-Field Matrix and
CLFSE

In the process of geometry optimisation within the molecular mechanics method one re-
quires derivatives of the total molecular energy with respect to each atomic coordinate.
Apart from the CLFSE, the formulae for the other force field terms are simple enough
that one may calculate their derivatives analytically. Until now we have been obliged to
calculate the derivatives of the CLFSE numerically with a finite difference approximation,
which is cumbersome, time consuming and prone to inaccuracy. In this section we develop
the formalism for obtaining these derivatives analytically from the previous expressions for
the ligand field matrix.

We consider the partial derivative of E with respect to one of the atomic coordinates
x

(λκ)
i (for λ = 0, 1, . . . , L; κ = 0, 1, . . . , Kλ; and i = 1, 2, 3). Let us for the moment denote

this derivative with a prime, so that we have from (26) that

E ′ = tr(NW′) , (66)

where we use the fact that N is a constant matrix (barycentred or otherwise). Differenti-
ating (23) we have

W′ = Q′VQT + QV′QT + QVQT ′
. (67)

Now Q is an orthogonal matrix, so that

QTQ = QQT = I , (68)

from which we obtain
Q′QT + QQT ′

= 0 = QT ′
Q + QTQ′ . (69)

The equation for W′ may now be rearranged as follows:

W′ = QV′QT + Q′(QTQ)VQT + QV(QTQ)QT ′

= QV′QT + Q′QTW + WQQT ′

= QV′QT + Q′QTW −WQ′QT . (70)

Therefore

tr(NW′) = tr(NQV′QT ) + tr(NQ′QTW −NWQ′QT )

13



= tr(NQV′QT ) + tr(NQ′QTW −WNQ′QT )

= tr(NQV′QT ) + tr
[
NQ′QT ,W

]
= tr(NQV′QT ) , (71)

where the square bracketed expression is a matrix commutator whose trace is therefore zero.
(We may go even further than this last equation by noting that, since N is an arbitrary
constant matrix, it follows that W′ is equal to the diagonal part of QV′QT .)

Writing our result now in full we have

∂E
∂x

(λκ)
i

= tr

(
NQ

∂V

∂x
(λκ)
i

QT

)
. (72)

1.6 Evaluation of the First Derivatives

The CLFSE part of the calculational task of the molecular mechanics method now consists
of finding V, diagonalizing it to give the eigenvalues, wa; using these with N to give the
energy E ; using the eigenvectors to construct Q; finding V′ and then using (72) to give E ′

for each atomic coordinate.
At this point we demonstrate a useful general result. We note from the relative coordi-

nate definitions (46) and the subsequent formulae for the parts of the ligand field matrix,
that the CLFSE may be written as a function of all the atomic positions relative to the
metal position. Formally, this is

E = R(r
(λκ)
i ) , (73)

where r
(λκ)
i ≡ x

(λκ)
i − x0

i ; λ = 1, . . . , L; κ = 0, 1, . . . , Kλ; and i = 1, 2, 3. Using the chain
rule of partial differentiation on this last equation gives us

∂E
∂x

(0)
i

=
∑
λκ

∑
j

∂R
∂r

(λκ)
j

∂r
(λκ)
j

∂x
(0)
i

=
∑
λκ

∑
j

∂R
∂r

(λκ)
j

(−δji)

= −
∑
λκ

∂E
∂x

(λκ)
i

. (74)

Another useful point to note is that, since the parts Vσ, Vπx, Vπy and b consist of sums
over the main ligand atom index λ, the derivatives with respect to a coordinate of any
atom in the ligand group annihilates the terms from all other main ligand groups.

With these last two simplifications in mind one may come to the details of finding the
derivatives of individual parts of the ligand field matrix for which formulae were developed
above. Beginning with Vσ(λ) from (48), we use the Leibniz product rule, and derivatives of
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G(σ)
a (~r(λ)) and

[
eσ(λ)/r(λ)4

]
to construct the result. The former is easy since it is expressed

in polynomial form (49). For the latter we have

∂

∂x
(λ)
i

[
eσ(λ)

r(λ)4

]
=

d

dr(λ)

[
eσ(λ)

r(λ)4

]
∂r(λ)

∂x
(λ)
i

=
d

dr(λ)

[
eσ(λ)

r(λ)4

]
x

(λ)
i

r(λ)
, (75)

since eσ(λ) is a function of r(λ), via a typical parametrisation such as our own

eσ(λ) = a0 + a1r + a2r
−2 + a3r

−3 + a4r
−4 + a5r

−5 + a6r
−6 . (76)

Similar terms in the other parts of the ligand field matrix may be treated thus. In particular,
the vector b from the d–s mixing term is quickly disposed of with a similar approach to
the foregoing.

For the cylindrical π bonding term one may proceed, like the σ term just treated, from
the expressions (52) and (53). One requires only the extra result for the derivative of the
term involving ρ(λ). Thus,

∂

∂x
(λ)
i

(
1

ρ(λ)2

)
=

(
− 1

ρ(λ)4

)
∂

∂x
(λ)
i

(
ρ(λ)2

)
(77)

and
∂

∂x
(λ)
i

(
ρ(λ)2

)
=
(
2x

(λ)
1 , 2x

(λ)
2 , 0

)
. (78)

In the degenerate case, where ρ(λ) → 0, we again consider the full matrix Γπ(λ0), taking the
appropriate derivatives (this being easy since the matrix elements are polynomials) and
setting x, y → 0.

In the cases involving subsidiary atoms, one must bear in mind that the dependence of
the LF matrix expressions on the ligand atom positions and subsidiary atom positions is
different. Thus, for one subsidiary atom, we have that, for example,

∂

∂x
(λ)
i

(
~g(x)

a (~r(λ)) · ~s(λ)
)

=
3∑

j=1

(
∂

∂r
(λ)
i

g
(x)
a,j (~r

(λ))

)
s
(λ)
j − g

(x)
a,i (~r

(λ)), (79)

but
∂

∂x
(λ1)
i

(
~g(x)

a (~r(λ)) · ~s(λ)
)

= g
(x)
a,i (~r

(λ)). (80)

In this case we also require the term involving σ(λ), similar to (77), for which we have

∂

∂x
(λ)
i

(
σ(λ)2

)
= 2

(
s(λ)2r

(λ)
i − r(λ)2s

(λ)
i − (~s(λ) · ~r(λ))(s

(λ)
i − r

(λ)
i )

)
, (81)

and, for the subsidiary atom,

∂

∂x
(λ1)
i

(
σ(λ)2

)
= 2

(
r(λ)2s

(λ)
i − (~s(λ) · ~r(λ))r

(λ)
i

)
. (82)
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For the case of two subsidiary atoms it is useful to write the expressions (59) and (60)
in Cartesian tensor form before evaluating the derivatives. In this way one is led to, for
example,

∂

∂x
(λ)
i

(
~h(x)

a (~r(λ)) · (~s(λ) × ~t(λ))
)

=
3∑

j=1

(
∂

∂r
(λ)
i

h
(x)
a,j (~r

(λ))

)
(~s(λ)×~t(λ))j +

(
(~s(λ) − ~t(λ))× ~h(x)

a

)
i
;

(83)
while, for the two subsidiary atoms,

∂

∂x
(λ1)
i

(
~h(x)

a (~r(λ)) · (~s(λ) × ~t(λ))
)

=
(
~t(λ) × ~h(x)

a

)
i
, (84)

and
∂

∂x
(λ2)
i

(
~h(x)

a (~r(λ)) · (~s(λ) × ~t(λ))
)

= −
(
~s(λ) × ~h(x)

a

)
i
. (85)

For the term involving τ (λ), we require the further expressions

∂

∂x
(λ1)
i

(
τ (λ)2

)
= 2

(
t(λ)2r(λ)2s

(λ)
i − (~s(λ) · ~t(λ))r(λ)2t

(λ)
i −

(
(~s(λ) × ~t(λ)) · ~r(λ)

)
(~t(λ) × ~r(λ))i

)
,

(86)
∂

∂x
(λ2)
i

(
τ (λ)2

)
= 2

(
s(λ)2r(λ)2t

(λ)
i − (~s(λ) · ~t(λ))r(λ)2s

(λ)
i −

(
(~s(λ) × ~t(λ)) · ~r(λ)

)
(~r(λ) × ~s(λ))i

)
,

(87)
and, finally,

∂

∂x
(λ)
i

(
τ (λ)2

)
= 2

(
s(λ)2t(λ)2r

(λ)
i − (~s(λ) · ~t(λ))2r

(λ)
i −

(
(~s(λ) × ~t(λ)) · ~r(λ)

)
(~s(λ) × ~t(λ))i

)
− ∂

∂x
(λ1)
i

(
τ (λ)2

)
− ∂

∂x
(λ2)
i

(
τ (λ)2

)
. (88)
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