Electronic Supplementary Information:

Scheme S1. Atom numbering for thione and thiol tautomers of thioacetamide

Figure S1

High frequency region of the infrared spectra of thioacetamide isolated in Ar and N₂ matrices compared with the spectrum calculated theoretically for the thione-amino tautomer **I**. Baseline of the experimental spectra was corrected; theoretical spectra were calculated at the DFT(B3LYP)/6-31++G(d,p) level, and theoretical frequencies scaled by 0.98.

Figure S2.

The infrared spectra of thioacetamide isolated in Ar and N₂ matrices compared with the spectrum calculated theoretically for the thione-amino tautomer I. Baseline of the experimental spectra was corrected; theoretical spectra were calculated at the DFT(B3LYP)/6-31++G(d,p) level, and theoretical frequencies scaled by 0.98.

Table S1.

Internal coordinates used in the normal mode analysis for the thione tautomer of thioacetamide. Atom numbering as in Scheme S1.

$S_1 = (2^{-1/2})(r_{3,9} + r_{3,8})$	$\nu_{s}NH_{2}$
$S_2 = (2^{-1/2})(r_{3,9} - r_{3,8})$	$\nu_a NH_2$
S ₃ =r _{3,2}	v CN
$S_4 = r_{2,4}$	v C=S
$S_5 = r_{2,1}$	v CC
$S_6 = (3^{-1/2})(r_{1,7} + r_{1,6} + r_{1,5})$	v Mel
$S_7 = (6^{-1/2})(2r_{1,5} - r_{1,7} - r_{1,6})$	v Me2
$S_8 = (2^{-1/2})(r_{1,7} - r_{1,6})$	v Me3
$S_9 = (6^{-1/2})(2\beta_{8,9,3} - \beta_{8,2,3} - \beta_{9,2,3})$	NH ₂ scis
$S_{10}=(2^{-1/2})(\beta_{8,2,3} - \beta_{9,2,3})$	NH ₂ rock
$S_{11}=(6^{-1/2})(2\beta_{3,1,2} - \beta_{3,4,2} - \beta_{1,4,2})$	β CCN
$S_{12}=(2^{-1/2})(\beta_{3,4,2} - \beta_{1,4,2})$	βC=S
$S_{13} = (12^{-1/2})(\beta_{7,5,1} + \beta_{7,6,1} + \beta_{5,6,1} - \beta_{7,2,1} - \beta_{5,2,1} - \beta_{6,2,1})$	β Me1
$S_{14}=(6^{-1/2})(2\beta_{7,6,1} - \beta_{7,5,1} - \beta_{6,5,1})$	β Me2
$S_{15}=(2^{-1/2})(\beta_{7,5,1} - \beta_{6,5,1})$	β Me3
$S_{16}=(6^{-1/2})(2\beta_{5,2,1} - \beta_{7,2,1} - \beta_{6,2,1})$	β Me4
$S_{17}=(2^{-1/2})(\beta_{7,2,1} - \beta_{6,2,1})$	β Me5
$S_{18} = (12^{-1/2})(\tau_{5,1,2,4} + \tau_{5,1,2,3} + \tau_{6,1,2,4} + \tau_{6,1,2,3} + \tau_{7,1,2,4} + \tau_{7,1,2,3})$	τMe
$S_{19} = 1/2(\tau_{8,3,2,4} + \tau_{8,3,2,1} + \tau_{9,3,2,4} + \tau_{9,3,2,1})$	$\tau \ NH_2$
$S_{20} = \gamma_{2,8,3,9}$	NH ₂ inv
$S_{21} = \gamma_{4,3,2,1}$	γ C=S

 $r_{i,j}$ is the distance between atoms A_i and A_j ; $\beta_{i,j,k}$ is the angle between vectors A_kA_i and A_kA_j ; $\tau_{i,j,k,l}$ is the dihedral angle between the plane defined by atoms A_i , A_j , A_k and the plane defined by A_j , A_k , A_l ; $\gamma_{i,j,k,l}$ is the angle between the vector A_kA_i and the plane defined by atoms A_j , A_k , A_l .

Table S2.

S ₁ =r _{3,8}	v NH
S ₂ =r _{4,9}	v SH
S ₃ =r _{2,3}	ν C=N
S ₄ =r _{4,2}	v CS
$S_5 = r_{2,1}$	v CC
$S_6 = (3^{-1/2})(r_{1,7} + r_{1,6} + r_{1,5})$	v Mel
$S_7 = (6^{-1/2})(2r_{1,5} - r_{1,7} - r_{1,6})$	v Me2
$S_8 = (2^{-1/2})(r_{1,7} - r_{1,6})$	v Me3
S ₉ =β _{7,2,3}	β ΝΗ
$S_{10} = (6^{-1/2})(2\beta_{3,1,2} - \beta_{4,3,2} - \beta_{1,4,2})$	β CCN
$S_{11} = \beta_{9,2,4}$	βSH
$S_{12}=(2^{-1/2})(\beta_{4,1,2} - \beta_{4,3,2})$	βCS
$S_{13} = (12^{-1/2})(\beta_{7,5,1} + \beta_{7,6,1} + \beta_{5,6,1} - \beta_{7,2,1} - \beta_{5,2,1} - \beta_{6,2,1})$	β Me1
$S_{14}=(6^{-1/2})(2\beta_{7,6,1} - \beta_{7,5,1} - \beta_{6,5,1})$	β Me2
$S_{15}=(2^{-1/2})(\beta_{7,5,1} - \beta_{6,5,1})$	β Me3
$S_{16}=(6^{-1/2})(2\beta_{5,2,1} - \beta_{7,2,1} - \beta_{6,2,1})$	β Me4
$S_{17}=(2^{-1/2})(\beta_{7,2,1} - \beta_{6,2,1})$	β Me5
$S_{18} = (12^{-1/2})(\tau_{7,1,2,4} + \tau_{7,1,2,3} + \tau_{5,1,2,4} + \tau_{5,1,2,3} + \tau_{6,1,2,4} + \tau_{6,1,2,3})$	τ Με
$S_{19} = (2^{-1/2})(\tau_{8,3,2,4} + \tau_{8,3,2,1})$	τNH
$S_{20} = (2^{-1/2})(\tau_{9,4,2,1} + \tau_{9,4,2,3})$	τ SH
$S_{21} = \gamma_{4,1,2,3}$	γCS

Internal coordinates used in the normal mode analysis for the thiol tautomer of thioacetamide. Atom numbering as in Scheme S1.

 $r_{i,j}$ is the distance between atoms A_i and A_j ; $\beta_{i,j,k}$ is the angle between vectors A_kA_i and A_kA_j ; $\tau_{i,j,k,l}$ is the dihedral angle between the plane defined by atoms A_i , A_j , A_k and the plane defined by A_j , A_k , A_l ; $\gamma_{i,j,k,l}$ is the angle between the vector A_kA_i and the plane defined by atoms A_j , A_k , A_l .

experi	ment	al			calc	ulated				
A r	motr	iv	N	motrix		DFT(B3LVP)/6-31++G(d n)				
AI	mau			maurix		(BSLIF)	PED			
$\tilde{\nu}^{a}$		1	$\tilde{\nu}^{a}$	Ι	\widetilde{v}^{t}	A^{**}	PED			
3521		67	3521 <u>3518</u> 3510	10	0 363	6 38	v _a NH ₂ (100)			
3466		1	3463	1	6					
3405 3404	sh	71	3406 <u>3404</u> 3401	sh 10 sh	1 350	2 46	v _s NH ₂ (100)			
3288		4	3288							
3176		2	3201		5					
2964		5	2966		4 304	1 16	v Me3(99)			
2925		6	2926		8 297	9 23	v Me1(91)			
1624 1615 1608 1603 <u>1597</u>		158	1617 <u>1610</u>	14	3 161	4 168	NH ₂ scis(90)			
1593			1605							
1457		3	1453		4 146	9 12	β Me3(80)			
1441		7	1443		5 144	8 13	β Me2(83) β Me4(10)			
			1432		6					
1378 <u>1369</u>		68	1377	11	1 138	1 26	β Me1(87)			
$\frac{1347}{1343}$		262	<u>1358</u> 1353	17 sh	9 135	7 250	v CN(54)			
1321 1312		24	1319		4 129	8 56	NH ₂ rock(40), ν CC(22), ν C=S(12)			
1018		2	1005		1 102	1 1	$0 M_{2} 5(42) = 0 M_{2} 4(26) + C - S(10)$			
000		20	070	5	1 102	1 1 9 12	$\beta \text{ Me5}(42), \beta \text{ Me4}(36), \gamma C=S(10)$			
<u>999</u> 007		29	9/9	5	1 99	0 15	β Me4(39), β Me3(30), NH ₂ rock(13), V CN(12)			
938		20	899 887	3	3 96	6 30	NH ₂ rock(37), v CC(33), v C=S(21)			
774		66					overtone of NH ₂ inv			
729		7	727	1	0 72	3 8	v C=S(49), v CC(34), v CN(10)			
592		6	637 <u>625</u> 618		6 60	9 10	τ NH ₂ (82)			
508		4	515		2 49	2 11	$\gamma C=S(81)$			
426		2			42	8 1	β CNN(66), β C=S(19)			
376	sh		376		2 36	9 4	β C=S(72), β CCN(17)			
368		157	442 437	13	9 35	5 183	NH ₂ inv(90), τ NH ₂ (10)			
					6	4 1	τ Me(99)			

Table S3. Experimental wavenumbers (\tilde{v} / cm⁻¹) and relative integral intensities (*I*) of the absorption bands in the spectrum of matrix isolated thioacetamide, compared with wavenumbers (\tilde{v} / cm^{-1}), absolute intensities $(A^{\text{th}}/\text{km}\cdot\text{mol}^{-1})$ and potential energy distribution (PED / %) theoretically calculated for the thione form I.

^a Wavenumbers of the strongest bands are underlined.
^b Theoretical frequencies have been scaled by 0.98. PED's lower than 10% are not included.

sh - shoulder

Normal mode frequencies (\tilde{v}), potential energy distribution (PED) and absolute intensities (A^{th}) of the theoretically predicted (DFT(B3LYP)/6-31++G(d,p)) IR bands for the form II of the thiol tautomer of thioacetamide.

mode	$\stackrel{\sim}{\nu}{}^a$	A^{th}	PED ^b	approximate
No.	cm ⁻¹	km·mol ⁻¹	%	assignment
Q1	3388	1	v NH(100)	NH str
Q2	3071	14	v Me2(100)	Me str
Q3	3053	5	v Me3(100)	Me str
Q4	2985	7	v Me1(100)	Me str
Q5	2641	1	v SH(100)	SH str
Q6	1656	158	v C=N(87)	C=N str
Q7	1457	23	β Me2(90)	Me bend
Q8	1449	13	β Me3(95)	Me bend
Q9	1383	18	β Me1(95)	Me umbr
Q10	1270	61	β NH(65), β CCN(11)	NH bend
Q11	1047	55	β Me4(55), β NH(26)	Me rock
Q12	1042	5	β Me5(73), τ NH(11), γ CS(85)	Me rock
Q13	981	55	β SH(34), v CC(30), β Me4(11), v C=N(10)	CC str, SH bend
Q14	838	14	β SH(59), v CC(29), β Me4(10)	SH bend
Q15	806	62	τ NH(90)	NH tors
Q16	626	52	ν CS(60), β CCN(17), ν CC(14)	CS str
Q17	488	1	γ CS(89), β Me5(10)	CS wagg
Q18	441	8	β CCN(51), v CS(27), β CS(18)	CCN bend, CS str
Q19	332	25	τ SH(96)	SH tors
Q20	321	4	β CS(75), β CCN(16)	CS bend
Q21	106	1	τ Me(98)	Me twist

^a Frequencies have been scaled by 0.98. ^b Internal coordinates used in PED analysis are defined in Table S2. PED's lower than 10% not included.

Normal mode frequencies (\tilde{v}), potential energy distribution (PED) and absolute intensities (A^{th}) of the theoretically predicted (DFT(B3LYP)/6-31++G(d,p)) IR bands for the form III of the thiol tautomer of thioacetamide.

mode	$\widetilde{\nu}^{\ a}$	$A^{ ext{th}}$	PED ^b	approximate
No.	cm ⁻¹	km·mol ⁻¹	%	assignment
Q1	3402	1	v NH(100)	NH str
Q2	3066	17	v Me2(100)	Me str
Q3	3051	6	v Me3(100)	Me str
Q4	2982	8	v Me1(100)	Me str
Q5	2639	8	v SH(100)	SH str
Q6	1659	179	v C=N(88)	C=N str
Q7	1458	17	β Me2(90)	Me bend
Q8	1450	13	β Me3(93)	Me bend
Q9	1380	14	β Me1(96)	Me umbr
Q10	1270	53	β NH(63), β CCN(11)	NH bend
Q11	1041	70	β Me4(52), β NH(28)	Me rock
Q12	1040	4	β Me5(73), τ NH(12)	Me rock
Q13	997	51	β SH(51), v CC(17), β Me4(13)	CC str, SH bend
Q14	885	14	β SH(44), v CC(39), β Me4(10)	SH bend
Q15	811	67	τ ΝΗ(89)	NH tors
Q16	628	51	ν CS(56), β CCN(18), ν CC(18)	CS str
Q17	495	1	γ CS(87), β Me5(10)	CS wagg
Q18	427	3	β CCN(55), v CS(30), β CS(11)	CCN bend, CS str
Q19	337	1	β CS(82), β CCN(11)	CS bend
Q20	212	7	τ SH(87)	SH tors
Q21	150	1	τ Me(92)	Me twist

^a Frequencies have been scaled by 0.98. ^b Internal coordinates used in PED analysis are defined in Table S2. PED's lower than 10% not included.

Normal mode frequencies (\tilde{v}), potential energy distribution (PED) and absolute intensities (A^{th}) of the theoretically predicted (DFT(B3LYP)/6-31++G(d,p)) IR bands for the form IV of the thiol tautomer of thioacetamide.

mode	$\widetilde{\nu}^{\ a}$	$A^{ ext{th}}$	PED ^b	approximate
No.	cm ⁻¹	km·mol ⁻¹	0⁄0	assignment
Q1	3414	4	v NH(100)	NH str
Q2	3098	4	v Me2(97)	Me str
Q3	3050	6	v Me3(100)	Me str
Q4	2986	7	v Me1(96)	Me str
Q5	2636	8	v SH(100)	SH str
Q6	1670	152	v C=N(86)	C=N str
Q7	1455	15	β Me3(92)	Me bend
Q8	1449	13	β Me2(92)	Me bend
Q9	1382	17	β Me1(94)	Me umbr
Q10	1236	233	β NH(65)	NH bend
Q11	1057	29	β Me4(57), β NH(17)	Me rock
Q12	1051	4	β Me5(75), τ NH(10)	Me rock
Q13	983	8	ν CC(35), β SH(31), β NH(14)	CC str, SH bend
Q14	858	13	β SH(61), v CC(29)	SH bend
Q15	831	64	τ ΝΗ(88)	NH tors
Q16	603	45	v CS(53), β CCN(28), v CC(10)	CS str
Q17	482	3	γ CS(89), β Me5(11)	CS wagg
Q18	436	15	β CCN(40), ν CS(37), β CS(19)	CCN bend, CS str
Q19	325	3	β CS(72), β CCN(18)	CS bend
Q20	269	12	τ SH(96)	SH tors
Q21	144	2	τ Me(96)	Me twist

^a Frequencies have been scaled by 0.98. ^b Internal coordinates used in PED analysis are defined in Table S2. PED's lower than 10% not included.

Normal mode frequencies (\tilde{v}), potential energy distribution (PED) and absolute intensities (A^{th}) of the theoretically predicted (DFT(B3LYP)/6-31++G(d,p)) IR bands for the form V of the thiol tautomer of thioacetamide.

mode	$\widetilde{\nu}^{a}$	A th	PED ^b	approximate
No.	cm ⁻¹	km·mol ⁻¹	%	assignment
01	3402	3	v NH(100)	NH str
$\frac{\sqrt{1}}{02}$	3093	6	v Me2(97)	Me str
Q2 03	3048	8	v Me3(100)	Me str
Q3 04	2986	8	v Me1(97)	Me str
05	2639	5	v SH(100)	SH str
Q5 06	1669	163	v C=N(86)	C=N str
Q0 07	1457	15	β Me3(93)	Me hend
Q7 08	1449	9	β Me2(92)	Me bend
Q0 09	1380	15	ß Me1(94)	Me umbr
010	1252	222	ß NH(65)	NH bend
011	1053	222	$\beta Met(05)$	Me rock
012	1055	5	$\beta Me5(75) \neq NH(12)$	Me rock
013	070	6	$\gamma CC(34) = SH(25) = R M_{24}(14) = SH(14)$	CC str. SH bend
Q13	979	0	$P \in C(54), p : SI(25), p : Wet(14), p : VI(14)$	SH hand
Q14 015	001	57	p SH(08), V CC(20)	NIL tora
Q15	040 606	27	CS(52) = CCN(26) + CC(12)	NH IOIS
Q10	495	3/	$V CS(35), \beta CCN(20), V CC(12)$	CS su
Q17	485	4	$\gamma CS(85), \beta MeS(10)$	CS wagg
Q18	414	16	$\beta \text{ CCN}(49), \nu \text{ CS}(38)$	CCN bend, CS str
Q19	332	1	β CS(83), β CCN(10)	CS bend
Q20	172	14	τ Me(60),	SH tors
Q21	144	8	τ SH(58), τ Me(40)	Me twist

^a Frequencies have been scaled by 0.98. ^b Internal coordinates used in PED analysis are defined in Table S2. PED's lower than 10% not included.

Table S8.

Optimized geometries of thione and thiol isomers of thiourea obtained at MP2/6-31++G(d,p) level of calculation.

			Isomers		
	Ι	II	III	IV	V
			Bond lengths (Å)		
C1 - C2	1.509	1.507	1.508	1.502	1.501
C2 - N3	1.359	1.285	1.285	1.283	1.283
C2 - S4	1.643	1.772	1.776	1.790	1.791
N3 - H9	1.009				
S4 - H9		1.333	1.332	1.333	1.332
N3 - H8	1.008	1.022	1.022	1.022	1.023
C1 - H5	1.091	1.088	1.089	1.087	1.087
С1 - Н6	1.092	1.091	1.090	1.090	1.091
C1 - H7	1.085	1.091	1.090	1.090	1.090
			Angles (deg)		
C1 - C2 - N3	113.4	127.1	126.8	120.0	120.1
C1 - C2 -S4	123.7	113.3	117.2	112.3	116.9
C2 - S4 - H9		94.1	96.0	96.0	96.6
C2 - N3 - H9	118.7				
C2 - N3 -H8	120.9	109.3	109.5	112.2	111.7
H8 - N3 - H9	117.9				
С2 - С1 - Н6	109.8	110.4	110.7	110.5	110.8
C2 - C1 - H5	110.6	110.1	109.9	108.5	108.4
C2 - C1 - H7	110.1	110.4	110.3	110.5	110.4
		I	Dihedral angles (deg	g)	
C1 - C2 - N3 - S4	178.8	180.0	177.7	180.0	177.0
H8 - N3 - C2 - H9	161.7				
C1 - C2 - S4 - H9		180.0	10.1	180.0	18.3
C1 - C2 - N3 - H8	-10.6	0.0	-0.4	180.0	-179.9
N3 - C2 - C1 - H6	73.4	120.4	124.9	120.2	124.5
N3 - C2 - C1 - H5	-46.1	0.0	4.7	120.2	4.3
N3 - C2 - C1 - H7	-167.0	-120.4	-115.4	-120.2	-115.8

Table S9.

Relative electronic (ΔE_{el}), zero-point vibrational (ΔZPE), and total [$\Delta E_{tot} = \Delta E_{el} + \Delta ZPE(DFT)$] energies of thioacetamide isomers. The energy of the thione-amino I form was taken as reference. The calculations were carried out with 6-31++G(d,p) basis set. All data in kJ mol⁻¹.

Isomer	Π	III	IV	V
$\Delta E_{el}(MP2)$	48.3	57.3	48.5	49.7
$\Delta E_{el}(DFT)$	54.0	62.3	54.0	54.9
$\Delta ZPE(DFT)$	-9.0	-9,0	-8.9	-9.4
$\Delta E_{tot}(MP2)$	39.3	48.3	39.6	40.3
$\Delta E_{tot}(DFT)$	45.0	53.3	45.1	45.5