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Simulating frequency-swept magnetic resonance spectra of V15. 
 
The transmission coefficient of a plane parallel sample as a function of frequency 
(hereafter called transmission spectrum) depends on both the complex dielectric 
permittivity (ε*) and the complex magnetic permeability of the sample (µ∗). These are 
defined as Eqs. 1 and 2, respectively: 
 
ε*(ν) = ε'(ν) + iε''(ν)        (1) 
µ∗(ν) = µ'(ν) + iµ''(ν).        (2) 
 
In these equations, the ε'(ν) is the effective dielectric constant and ε''(ν) is the dielectric 
absorption. Likewise, µ'(ν) is the magnetic permeability and µ''(ν) is the magnetic 
absorption. In the general case of an anisotropic system, ε*(ν)and µ∗ (ν) are tensors. The 
magnetic permeability tensor also includes gyrotropic (antisymmetric) components for 
magnetized media. The interference of radiation inside the plane parallel slab of the finite 
thickness causes oscillations in the baseline of the transmission spectrum, of which the 
period is determined by ε'(ν) and the thickness d of the sample. The damping of these 
oscillations and the slope of the baseline are determined by ε''(ν). In our analyses the 
complex dielectric permittivity is assumed to be independent on radiation frequency in 
the narrow range of the magnetic absorption. Around the resonance frequency, i.e. where 
the radiation frequency is equal to the energy difference between two adjacent spin 
sublevels (MS states in the absence of transverse terms in the spin Hamiltonian), strong 
absorption of radiation occurs due to the magnetodipolar transition. Outside this region 
the µ'(ν) is assumed 1 and µ''(ν) is taken as being 0. Experimentally, two parameters are 
available, namely the transmission coefficient, Tr, and the phase change, ϕ. The dielectric 
permittivity parameters are calculated from Tr and ϕ, outside the magnetic dispersion 
region. The obtained values are then used in the region of the magnetic resonance line, 
and finding the magnetic permeability parameters are obtained by solving two equations 
with two unknowns. However, in this study only Tr was measured, and the following 
procedure was used: 1) The complex dielectric permeability parameters were fitted rather 
than calculated in the region outside the magnetic resonance. 2) Furthermore, an 
assumption was made about the lineshape of the magnetic resonance line, for which a 
Lorentzian was used. In the following, first the general dependence of the transmission 
coefficient on the dielectric and magnetic permeabilities is shown, which is then followed 
by the formulas used in our studies, which assume a Lorentzian lineshape and where the 
powder nature of the sample has been taken into account. 
 
The transmission coefficient is a rather complicated function of the complex dielectric 
and magnetic permeabilities, which can be deduced from the Fresnel equations in 
optics.(see for instance 1) In most textbooks, the magnetic permeability is not considered, 
and µ' is taken as 1 and µ" as 0. In the case of magnetodipolar transitions this is obviously 
no longer true, and the most general case has to be used, as given in Eq. 3 and following:2 
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In this equation E and N are functions of the extinction coefficient (k), the real refractive 
index (n), the resonance frequency (ν), and the thickness of the sample (d), as given by 
Eqs. 4 and 5, respectively: 
 

dkeE νπ4−=          (4) 
 

dnN νπ2=          (5) 
 
The complex refractive index, given by Eq. 6, can be expressed in terms of the complex 
dielectric and magnetic permeabilities according to Eqs. 7 and 8: 
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In Eqs. 7 and 8, the θ1 and θ2 quantities are functions of the complex dielectric and 
magnetic permeabilities, given by Eqs. 9 and 10: 
 

µεµεθ ′′′′−′′=1         (9) 
 

µεµεθ ′′′−′′′=2         (10) 
 
The quantity R in Eq. 3 is a function of, ultimately, the complex dielectric and magnetic 
permeabilities, as given in Eq. 11: 
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where a and b are given in Eq 12 and 13 respectively: 
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In Eqs. 12 and 13 the γ1 and γ2 quantities are given by Eqs. 14 and 15 respectively: 
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The remaining parameter in Eq. 3, ψ, again depends on the complex dielectric and 
magnetic permeabilities, according to Eq. 16: 
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with a, and b defined in Eqs. 12 and 13 respectively. 
 
The phase change also depends on the dielectric and magnetic permeabilities (Eq. 17): 
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with all parameters as defined above. 
 
In the present study, the phase change was not measured and instead the lineshape was 
assumed to be Lorentzian (Eq. 18).  
 

( ) ( )νννν
µν

νµ
∆−−

∆
+=

iH

H
22

2

1*       (18) 

 
This equation can be rewritten in terms of µ' and µ" as in Eqs. 19 and 20, respectively: 
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In this equation ∆µ is the mode contribution, which determines the intensity of the 
absorption line. The parameter νH is the resonance frequency as given by the difference 
in energies of the spin states and ∆ν is the linewidth of the absorption line. 
 
The transition between the spin states is due to the oscillating magnetic field of the 
radiation. The Hamiltonian describing the interaction between this field and the 
paramagnetic system contains the magnetic moment operator, which is given by (Eq. 21).  
 

Sgµ ˆˆ ⋅= Bµ           (21) 
 
Although in our system the g tensor is axial, for the calculation of ∆µ, we have used the 
average g factor in view of the small anisotropy of the g tensor. This approximation was 
supported by the quality of the fits that were obtained eventually. 
 
In general, the mode contribution, ∆µ  is determined by the square of the matrix elements 
coupling the initial and final states by the magnetic moment operator, the energy 
difference between initial and final states, the number of molecules per cm3 (the density 
of the sample) and a Boltzmann weighting factor accounting for the population difference 
between initial and final states. 
 
The mentioned matrix element is then (Eq. 22): 
 

nmgnm B Sµ ˆˆ µ=         (22) 
 
in the case of an isotropic g value. Since Ŝz does not couple states with ∆MS ≠ 0, only the 
Ŝx and Ŝy play a role. The Boltzmann weighting factor is given by (Eq. 23): 
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where E denotes the energy of a spin state with respect to the ground state and the 
denominator is the partition function that sums over all available energy levels. 
 
The total mode contribution to the magnetic permeability for the magnetodipolar 
transition m → n with the frequency hνnm=En – Em is then given by (Eq. 25):  
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where N = ρNA/M, with ρ the density of the sample in g cm–3, M the molecular weight of 
the system, and NA is the Avagadro number.  
 
In the case of a magnetised medium, the magnetic permeability becomes gyrotropic , and 
the resulting permeability becomes a tensorial quantity, described by Eq. 26, for the 
magnetisation along the z-axis:3 
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This expression can be used both for powder samples and single crystalline ones with 
axial (hexagonal, tetragonal) symmetry and for H|| the symmetry axis. The parallel 
component of the effective magnetic permeability does not contribute to the effective 
permeability, since in the case of weak anisotropy, the spins precess around the 
magnetisation direction (z axis), and therefore the magnetisation does not oscillate in the 
z direction. 
For transversely magnetized media (i.e. H||M⊥k, Voigt geometry) the magnetic 
permeability, which determines the transmission coefficient (as outlined above) becomes 
(Eq. 27): 
 
µeff(ν) = µ⊥(ν) –µa(ν)2/µ⊥(ν)         (27) 
 
Here the off-diagonal elements µa are often neglected; however, they were shown to have 
some importance in V15 in our Voigt geometry experiment. 
 
So far we suggested only a single orientation of the molecule with respect to the magnetic 
field (H||symmetry axis). In a polycrystalline sample comprised of axially anisotropic 
molecules, their contribution to the magnetic permeability has to be averaged with 
respect to the angle θΗ between the magnetic field and anisotropy axis. The average of a 
function that depends on θΗ is (Eq. 27): 
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Therefore, assuming a Lorentzian lineshape of the resonance mode in the single 
molecules, the beforementioned actual components of the effective magnetic 
permeability become (Eqs. 28 and 29) : 
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where νH(θΗ) = (µΒH /h)(g2
⊥csin2θΗ + g2

||ccos2θΗ)½, ∆ν and ∆µ are the resonance 
frequency, the intrinsic linewidth and the mode contribution to the permeability of the 
single molecule, respectively. Here ∆ν and ∆µ are also functions of θΗ , however this 
dependence is small due to the weak anisotropy of V15. The most important contribution 
in the integrals (27), (28) is due to the resonance frequency νH(θΗ).  Thus ∆µ in (28), and 
(29) is considered independent of θΗ and can be replaced by its value at the average g 
factor.  
For finite temperatures we have to take into account the contributions of all five 
magnetodipolar transitions. Asuming their frequencies are equal to each other and 
summing their individual contributions ∆µ(m→n) we can calculate that the mode 
contribution becomes (Eq. 30), using equalities of the type ½(exp(z)+exp(-z))=cosh(z): 
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where N = ρNA/MV15, ρ = 2.77 g cm–3. β = 1/kBT. As said above, we did not take into 
account the g value anisotropy in this formula, but rather used the average g value and the 
average resonance frequency that is derived from that (Eq. 30): 
 

( ) hHgggg BHcc µν =+= ⊥ ;22
//

22
     (30) 

 
The g value anisotropy is taken into account in the resonance frequency (νH) in Eq. 28 
and 29. 
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