Photoisomerization reactions of 4-methoxy- and 4-hydroxy-6-methyl-α-pyrones: an experimental matrix isolation and theoretical density functional theory study

Susana Breda, Leszek Lapinski, Rui Fausto and Maciej J. Nowak

ELECTRONIC SUPPLEMENTARY INFORMATION

Scheme S1. Atom numbering.

Figure S1. (A) Experimental spectrum recorded after UV ($\lambda > 320$ nm) irradiation of matrix isolated 4-hydroxy-6-methyl- α -pyrone; (B) the spectrum of the Dewar isomer **VIII** theoretically predicted at DFT(B3LYP)/6-311++G(d,p) level; (C) theoretical spectrum of the Dewar isomer **IX**. Theoretical wavenumbers were scaled by 0.98. Baseline of the experimental spectrum was corrected.

$S_1 = r_{1,2}$		v(O1-C2)
$S_2 = r_{2,3}$		v(C2-C3)
$S_3 = r_{3,4}$		v(C3=C4)
$S_4 = r_{4,5}$		v(C4-C5)
$S_5 = r_{5,6}$		v(C5=C6)
$S_6 = r_{6,1}$		v(C6-O1)
$S_7 = r_{7,2}$		v(C2=O7)
$S_8 = r_{8,6}$		v(C8-C6)
$S_9 = (3^{-1/2})(r_{9,8} + r_{10,8} + r_{11,8})$		$\nu(CH_3)^{1}_{s}$
$S_{10} = (6^{-1/2})(2r_{11,8} - r_{10,8} - r_{9,8})$		$\nu(CH_3)^{1}$, as
$S_{11} = (2^{-1/2})(r_{10,8} - r_{9,8})$		$\nu(CH_3)^{1,*}as$
$S_{12} = r_{12,5}$		v(C5-H12)
$S_{13} = r_{13,4}$		v(C4-O13)
$S_{14} = r_{14,13}$	hydroxy	v(O13-H14)
$S_{14} = r_{14,13}$	methoxy	v(O13-C14)
$S_{15} = r_{15,3}$		v(C3-H15)
$S_{16} = (6^{-1/2})(\beta_{2,6,1} - \beta_{1,5,6} + \beta_{6,4,5} - \beta_{5,3,4} + \beta_{4,2,3} - \beta_{3,1,2})$		δ ring 1
$S_{17} = (12^{-1/2})(2\beta_{2,6,1} - \beta_{1,5,6} - \beta_{6,4,5} + 2\beta_{5,3,4} - \beta_{4,2,3} - \beta_{3,1,2})$		δ ring 2
$S_{18} = (1/2)(-\beta_{1,5,6} + \beta_{6,4,5} - \beta_{4,2,3} + \beta_{3,1,2})$		δ ring 3
$S_{19} = (2^{-1/2})(\beta_{7,1,2} - \beta_{7,3,2})$		δ(C2=O7)
$S_{20} = (2^{-1/2})(\beta_{8,1,6} - \beta_{8,5,6})$		δ(C6-C8)
$S_{21} = (6^{-1/2})(\beta_{9,10,8} + \beta_{10,11,8} + \beta_{11,9,8} - \beta_{9,6,8} - \beta_{10,6,8} - \beta_{11,6,8})$		$\delta(CH_3)^{1}_{s}$
$S_{22} = (6^{-1/2})(2\beta_{9,10,8} - \beta_{10,11,8} - \beta_{11,9,8})$		$\delta(CH_3)^{1}$, as
$S_{23} = (2^{-1/2})(\beta_{10,11,8} - \beta_{11,9,8})$		$\delta(CH_3)^{1,*}_{as}$
$S_{24} = (6^{-1/2})(2\beta_{11,6,8} - \beta_{10,6,8} - \beta_{9,6,8})$		$\gamma(CH_3)^{1}$, as
$S_{25} = (2^{-1/2})(\beta_{10,6,8} - \beta_{9,6,8})$		$\gamma(CH_3)^{1,*}as$
$S_{26} = (2^{-1/2})(\beta_{12,6,5} - \beta_{12,4,5})$		δ(C5-H12)
$S_{27} = (2^{-1/2})(\beta_{13,5,4} - \beta_{13,3,4})$		δ(C4-O13)
$S_{28} = \beta_{14,4,13}$	hydroxy	δ(O13-H14)
$S_{28} = \beta_{14,4,13}$	methoxy	δ(O13-C14)
$S_{29} = (2^{-1/2})(\beta_{15,4,3} - \beta_{15,2,3})$		δ(C3-H15)

Table S1 Internal coordinates used in the normal mode analysis for the 4-hydroxy-6-methyl- α -pyrone and 4-methoxy-6-methyl- α -pyrone (Atom numbering as in Scheme S1)

q = (c - 1/2)		· 1
$S_{30} = (6^{12})(\tau_{6,1,2,3} - \tau_{1,2,3,4} + \tau_{2,3,4,5} - \tau_{3,4,5,6} + \tau_{4,5,6,1} - \tau_{5,6,1,2})$		γ ring I
$S_{31} = (12^{-1/2})(2\tau_{6,1,2,3} - \tau_{1,2,3,4} - \tau_{2,3,4,5} + 2\tau_{3,4,5,6} - \tau_{4,5,6,1} - \tau_{5,6,1,2})$		γ ring 2
$S_{32} = (1/2) (\tau_{1,2,3,4} - \tau_{2,3,4,5} + \tau_{4,5,6,1} - \tau_{5,6,1,2})$		γ ring 3
$S_{33} = (6^{-1/2})(\tau_{11,8,6,5} + \tau_{11,8,6,1} + \tau_{10,8,6,5} + \tau_{10,8,6,1} + \tau_{9,8,6,5} + \tau_{9,8,6,1})$		twist $(CH_3)^1$
$S_{34} = (2^{-1/2})(\tau_{14,13,4,5} + \tau_{14,13,4,3})$	hydroxy	τ(C4-OH)
$S_{34} = (2^{-1/2})(\tau_{14,13,4,5} + \tau_{14,13,4,3})$	methoxy	τ (C4-OCH ₃)
$S_{35} = \gamma_{7,3,2,1}$		γ(C2=O7)
$S_{36} = \gamma_{8,1,6,5}$		γ(C6-C8)
$S_{37} = \gamma_{12,6,5,4}$		γ(C5-H12)
$S_{38} = \gamma_{13,5,4,3}$		γ(C4-O13)
$S_{39} = \gamma_{15,4,3,2}$		γ(C3-H15)
$S_{40} = (3^{-1/2})(r_{18,14} + r_{16,14} + r_{17,14})$	methoxy	$\nu(CH_3)^2_{s}$
$S_{41} = (1/2)(2r_{17,14} - r_{16,14} - r_{18,14})$	methoxy	$\nu(CH_3)^{2}$, _{as}
$S_{42} = (2^{-1/2})(r_{16,14} - r_{18,14})$	methoxy	$\nu(CH_3)^{2,*}_{as}$
$S_{43} = (6^{-1/2})(\beta_{18,16,14} + \beta_{16,17,14} + \beta_{17,18,14} - \beta_{18,13,14} - \beta_{16,13,14} - \beta_{17,13,14})$	methoxy	$\delta(CH_3)^2_{s}$
$S_{44} = (6^{-1/2})(2\beta_{18,16,14} - \beta_{16,17,14} - \beta_{17,18,14})$	methoxy	$\delta(CH_3)^{2}$, as
$S_{45} = (2^{-1/2})(\beta_{16,17,14} - \beta_{17,18,14})$	methoxy	$\delta(CH_3)^{2"}_{as}$
$S_{46} = (6^{-1/2})(2\beta_{17,13,14} - \beta_{16,13,14} - \beta_{18,13,14})$	methoxy	$\gamma(CH_3)^{2}$, as
$S_{47} = (2^{-1/2})(\beta_{16,13,14} - \beta_{18,13,14})$	methoxy	$\gamma(CH_3)^{2"}_{as}$
$S_{48} = (3^{-1/2})(\tau_{18,14,13,4} + \tau_{17,14,13,4} + \tau_{16,14,13,4})$	methoxy	twist $(CH_3)^2$

 $r_{i,j}$ is the distance between atoms A_i and A_j ; $\beta_{i,j,k}$ is the angle between vectors A_kA_i and A_kA_j ; $\tau_{i,j,k,l}$ is the dihedral angle between the plane defined by A_i , A_j , A_k and the plane defined by A_j , A_k , A_l atoms; $\gamma_{i,j,k,l}$ is the angle between the vector A_kA_i and the plane defined by atoms A_j , A_k , A_l .

Table S2 Experimental wavenumbers \tilde{v} (cm⁻¹), integral intensities *I* (relative) of the infrared bands of 4-methoxy-6-methyl- α -pyrone compared with theoretical wavenumbers \tilde{v} (cm⁻¹), absolute intensities Ath (km mol⁻¹) and potential energy distributions (%) calculated for form **I**.

Experimen	ıtal		Calculated			
Ar matrix			DFT(B3LYF	P)/6-311+	+G(d,p)	
$\widetilde{\mathbf{v}}$		Ι	$\widetilde{\mathbf{v}}^{a}$	A th	sym.	PED ^b
3018 3014	}	17				
2070)	20	3174	1	Δ'	v(C3-H15)(100)
2979		14	3162	1	A'	v(C5-H12)(99)
2931)	14	3086	14	A'	$v(CH_3)^{2*}a_{s}(92)$
2937	}	7	3067	10	A'	$v(CH_3)^{1,as}(97)$
2915)		3030	24	A''	$v(CH_3)^{2,*}$ (100)
2880		0	3028	5	A"	$\nu(CH_3)^{1,1}_{1,1}$ as (100)
2875		17	2975	11	A'	$v(CH_3)^{l}_{s}(97)$
2859)	1/	2964	32	А	$v(CH_3)^2$ (92)
2836	}	6 /				
2820)	6				
1760)	0				
1762	}	712	1770	751	A'	v(O7=C2)(81)
1725)	16				
1664)					
1657	}	190	1650	233	A'	v(C5=C6)(52) + v(C3=C4)(13)
1584)					
1582	}	244	1566	245	A'	v(C3=C4)(49) + v(C5=C6)(11) + v(C4-C5)(11)
1576)					
		(1473	8	A'	$\delta(CH_3)^{2^*}_{as}(83)$
1462		115 {	1464	76	A'	$\delta(CH_3)^{1*}_{as}(39) + \delta(CH_3)^{2*}_{s}(21) + v(C4-C5)(10)$
		(1463	11	A''	$\delta(CH_3)^{2,*}a_{s}(94)$
1443		16	1449	11	A'	$\delta(CH_3)^2_{s}(55) + \delta(CH_3)^{1*}_{as}(36)$
1434		11	1441	9	A''	$\delta(CH_3)^{1,2}$ (91)
1406		82	1404	88	A'	$\delta(\text{C3-H15})(18) + \nu(\text{C4-C5})(18) + \delta(\text{CH}_3)^2 (17) + \delta(\text{CH}_3)^3 (12)$
1363		4	1390	2	А	$O(CH_3)_{s}(91)$
1351		5				
1322)	-				
1319	}	46	1320	57	A'	$\delta(C5-H12)(21) + v(O1-C6)(21) + v(C3-C2)(13)$
1250		196	1244	205	A'	$v(C4-O13)(31) + \delta(C3-H15)(26) + \gamma(CH_3)^{2}$, (10)
1201		4	1195	9	A'	$\gamma(CH_3)^{2*}_{as}(39) + \delta(C5-H12)(18) + \delta(C3-H15)(15)$
1163)	71 ∫	1157	41	A'	$\gamma(CH_3)^{2*} (32) + \delta(C5-H12)(18) + \nu(C4-O13)(14)$
1153	\$	/1)	1146	1	A''	$\gamma(CH_3)^{2} \gamma_{as}^{*} (93)$
1146)					
1140	}	70	1120	51	A'	$v(C3-C2)(33) + \delta(C3-H15)(16) + v(C8-C6)(12)$
1121)					
1047)	(1042	50	A'	$v(O13-C14)(33)+\delta(C5-H12)(18)+v(C4-C5)(12)+\gamma(CH_3)^{1*}as(11)$
1046	}	71 {				
1041)	(1041	3	A''	$\gamma(CH_3)^{1,*}_{as}(78) + \gamma(C6-C8)(14)$
1027)	28	1013	20	۸,	$v(CH)^{1}$, (51) + $v(O1,C6)(18) + v(O12,C14)(13)$
1024	J	20	1013	20	11	(013) = as(31) + v(01-00)(10) + v(013-014)(13)
984		8	973	7	A'	$\delta \operatorname{ring} 1 (37) + \nu(C4-C5)(23) + \nu(O1-C6)(15)$
943		44	932	33	A'	v(O13-C14)(32) + v(C8-C6)(19) + v(C4-O13)(12)
856		(7	011	70	A ?	(01, 02)(54) + 8 + (15)
852 810	Í	0/	811	/0	А	$v(01-02)(54) + 0 \operatorname{ring} 1 (15)$
81 <i>1</i>	,	77	801	67	Δ''	$\gamma(C_5-H_{12})(57) + \gamma(C_3-H_{15})(20) + \gamma(C_4-O_{12})(20)$
800		2	795	4	A''	$\gamma(C3-H15)(48) + \gamma(C5-H12)(44) + \gamma(C2=O7)(20)$
000		-				

		705	1	A''	$\gamma(C2=O7)(61) + \gamma \operatorname{ring} 1 (29) + \gamma(C3-H15)(15)$
684	3	672	2	A''	γ (C4-O13)(50) + γ ring 1 (29)
634	9	623	8	A'	$v(O1-C2)(12) + \delta(C4-O13)(11) + \delta(O13-C14)(11) + \delta ring 1 (11)$
561	3	548	5	A'	$\delta(C2=O7)(35) + \nu(C8-C6)(10)$
		542	0.09	A''	γ (C6-C8)(50) + γ ring 3 (20) + γ (C4-O13)(17)
541	9	535	5	A'	$\delta \operatorname{ring} 3 (68) + \delta (O13-C14)(12)$
		479	1	A'	δ ring 2 (42)
		397	0.2	A'	$\delta \operatorname{ring} 2(30) + \delta(O13-C14)(22) + \delta(C2=O7)(13)$
		289	1	A'	$\delta(C6-C8)$ (60)
		245	3	A''	<i>twist</i> $(CH_3)^2(62) + \gamma \operatorname{ring} 2 (20)$
		216	0.04	A''	τ (C4-OCH ₃)(30) + γ ring 2 (18) + <i>twist</i> (CH ₃) ² (15) + γ ring 3 (12)
					+ twist $(CH_3)^1 (11) + \gamma (C6-C8)(11)$
		211	6	A'	$\delta(C4-O13)(48) + \delta(O13-C14)(31)$
		178	4	A''	$\gamma \operatorname{ring} 3(57) + twist (CH_3)^2(20) + \gamma \operatorname{ring} 2(14) + \gamma (C6-C8)(10)$
		152	0.08	A''	<i>twist</i> $(CH_3)^1(61) + \gamma ring 1 (18)$
		138	0.1	A''	$\gamma \operatorname{ring} 1 (36) + twist (CH_3)^1 (22) + \gamma \operatorname{ring} 2 (22)$
		94	4	A''	τ (C4-OCH ₃) (56) + γ ring 2 (25)

^a Theoretical positions of absorption bands were scaled by a factor of 0.98. ^b PED's lower than 10% are not included. Definition of internal coordinates is given in Table S1.

$S_1 = r_{1,2}$		v(O1-C2)
$S_2 = r_{2,3}$		v(C2-C3)
$S_3 = r_{3,4}$		v(C3-C4)
$S_4 = r_{4,5}$		v(C4=C5)
$S_5 = r_{5,6}$		v(C5-C6)
$S_6 = r_{6,1}$		v(O1-C6)
$S_7 = r_{6,3}$		v(C3-C6)
$S_8 = r_{7,2}$		v(C2=O7)
$S_9 = r_{8,6}$		v(C6-C8)
$S_{10} = (3^{-1/2})(r_{9,8} + r_{10,8} + r_{11,8})$		$\nu(CH_3)^{1}_{s}$
$S_{11} = (6^{-1/2})(2r_{10,8} - r_{9,8} - r_{11,8})$		$\nu(CH_3)^{1}$, as
$S_{12} = (2^{-1/2})(r_{9,8} - r_{11,8})$		$\nu(CH_3)^{1,*}as$
$S_{13} = r_{12,5}$		v(C5-H12)
$S_{14} = r_{13,4}$		v(C4-O13)
$S_{15} = r_{14,13}$	hydroxy	v(O13-H14)
$S_{15} = r_{14,13}$	methoxy	v(O13-C14)
$S_{16} = r_{15,3}$		v(C3-H15)
$S_{17} = (1/2)(\beta_{2,6,1} + \beta_{2,6,3} - \beta_{1,3,2} - \beta_{1,3,6})$		δ ring 1
$S_{18} = (1/2)(\beta_{2,4,3} + \beta_{2,4,5} - \beta_{3,5,6} - \beta_{3,5,4})$		δ ring 2
$S_{19} = (2^{-1/2})(\beta_{7,1,2} - \beta_{7,3,2})$		δ(C2=O7)
$S_{20} = \beta_{8,3,6}$		δ(C6-C8)
$S_{21} = (6^{-1/2})(\beta_{9,10,8} + \beta_{10,11,8} + \beta_{11,9,8} - \beta_{9,6,8} - \beta_{10,6,8} - \beta_{11,6,8})$		$\delta(CH_3)^{1}_{s}$
$\mathbf{S}_{22} = (6^{-1/2})(2\beta_{9,11,8} - \beta_{10,11,8} - \beta_{10,9,8})$		$\delta(CH_3)^{1}$, as
$S_{23} = (2^{-1/2})(\beta_{10,11,8} - \beta_{10,9,8})$		$\delta(CH_3)^{1,*}_{as}$
$S_{24} = (6^{-1/2})(2\beta_{10,6,8} - \beta_{9,6,8} - \beta_{11,6,8})$		$\gamma(CH_3)^{1}$, as
$S_{25} = (2^{-1/2})(\beta_{9,6,8} - \beta_{11,6,8})$		$\gamma(CH_3)^{1,"}_{as}$
$S_{26} = (2^{-1/2})(\beta_{12,6,5} - \beta_{12,4,5})$		δ(C5-H12)
$S_{27} = (2^{-1/2})(\beta_{13,3,4} - \beta_{13,5,4})$		δ(C4-O13)
$S_{28} = \beta_{14,4,13}$	hydroxy	δ(O13-H14)
$S_{28} = \beta_{14,4,13}$	methoxy	δ(O13-C14)
$S_{29} = \beta_{15,6,3}$		δ(C3-H15)

Table S3 Internal coordinates used in the normal mode analysis for the 4-hydroxy-6-methyl-1-oxa-2-oxobicyclo[2.2.0]hex-4-ene and 4-methoxy-6-methyl-1-oxa-2-oxobicyclo[2.2.0]hex-4-ene. (Atom numbering as in Scheme S1)

$S_{30} = (1/2)(\tau_{6,1,2,3} - \tau_{1,2,3,6} + \tau_{2,3,6,1} - \tau_{3,6,1,2})$		τ ring 1
$S_{31} = (1/2)(\tau_{6,5,4,3} - \tau_{5,4,3,6} + \tau_{4,3,6,5} - \tau_{3,6,5,4})$		τ ring 2
$S_{32} = (2^{-1/2})(\tau_{8,6,3,4} + \tau_{8,6,3,2})$		γ(C6-C8)
$S_{33} = (2^{-1/2})(\tau_{15,3,6,1} + \tau_{15,3,6,5})$		γ(C3-H15)
$S_{34} = (2^{-1/2})(\tau_{2,3,6,5} - \tau_{4,3,6,1})$		τ butterfly
$S_{35} = (6^{-1/2})(\tau_{9,8,6,1} + \tau_{9,8,6,5} + \tau_{10,8,6,1} + \tau_{10,8,6,5} + \tau_{11,8,6,1} + \tau_{11,8,6,5})$		twist $(CH_3)^1$
$S_{36} = (2^{-1/2})(\tau_{14,13,4,3} + \tau_{14,13,4,5})$	hydroxy	τ(С4-ОН)
$S_{36} = (2^{-1/2})(\tau_{14,13,4,3} + \tau_{14,13,4,5})$	methoxy	$\tau(C4\text{-}OCH_3)$
$S_{37} = \gamma_{7,1,2,3}$		γ(C2=O7)
$S_{38} = \gamma_{12,6,5,4}$		γ(C5-H12)
$S_{39} = \gamma_{13,5,4,3}$		γ(C4-O13)
$S_{40} = (3^{-1/2})(r_{18,14} + r_{16,14} + r_{17,14})$	methoxy	$\nu(CH_3)^2_s$
$S_{41} = (6^{-1/2})(2r_{18,14} - r_{16,14} - r_{17,14})$	methoxy	$\nu(CH_3)^{2}$, as
$S_{42} = (2^{-1/2})(r_{16,14} + r_{17,14})$	methoxy	$\nu(CH_3)^{2,*}_{as}$
$S_{43} = (6^{-1/2})(\beta_{18,16,14} + \beta_{16,17,14} + \beta_{17,18,14} - \beta_{18,13,14} - \beta_{16,13,14} - \beta_{17,13,14})$	methoxy	$\delta(CH_3)^2_{s}$
$S_{44} = (6^{-1/2})(2\beta_{17,16,14} - \beta_{16,18,14} - \beta_{17,18,14})$	methoxy	$\delta(CH_3)^{2}$, as
$S_{45} = (2^{-1/2})(\beta_{16,18,14} - \beta_{17,18,14})$	methoxy	$\delta(CH_3)^{2"}_{as}$
$S_{46} = (6^{-1/2})(2\beta_{18,13,14} - \beta_{16,13,14} - \beta_{17,13,14})$	methoxy	$\gamma(CH_3)^{2}$, as
$S_{47} = (2^{-1/2})(\beta_{16,13,14} - \beta_{17,13,14})$	methoxy	$\gamma(CH_3)^{2,*}a_s$
$S_{48} = (3^{-1/2})(\tau_{18,14,13,4} + \tau_{16,14,13,4} + \tau_{17,14,13,4})$	methoxy	twist $(CH_3)^2$

 $r_{i,j}$ is the distance between atoms A_i and A_j ; $\beta_{i,j,k}$ is the angle between vectors A_kA_i and A_kA_j ; $\tau_{i,j,k,l}$ is the dihedral angle between the plane defined by A_i , A_j , A_k and the plane defined by A_j , A_k , A_l atoms; $\gamma_{i,j,k,l}$ is the angle between the vector A_kA_i and the plane defined by atoms A_j , A_k , A_l .

Table S4 Experimental wavenumbers \tilde{v} (cm⁻¹), integral intensities *I* (relative) of the bands in the infrared spectrum of the photoproduct generated upon UV (λ >320 nm) irradiation of 4-methoxy-6-methyl- α -pyrone, compared with theoretical wavenumbers \tilde{v} (cm⁻¹), absolute intensities Ath (km mol⁻¹) and potential energy distributions (%) calculated for 4-methoxy-6-methyl-1-oxa-2-oxobicyclo[2.2.0]hex-4-ene isomer **III**.

Experime	ntal		Calculate	d	
Ar matrix			DFT(B3L	YP)/6-31	++G(d,p)
$\widetilde{\mathbf{v}}$		Ι	$\widetilde{\mathbf{V}}^{a}$	\mathbf{A}^{th}	PED ^b
3033	}	14			
3025)		3166	3	v(C5-H12) (99)
2982		41	3089	13	$v(CH_3)^{2^3}$ as (93)
2946		33	3059	9	v(C3-H15) (99)
2911		5	3050	13	$\nu(CH_3)^{1,*}_{as}$ (99)
2899		3	3038	12	$v(CH_3)^{1}_{as}(98)$
2871		2	3037	19	$\nu(CH_3)^{2,*}a_{as}$ (99)
2853	}	7	2975	13	$v(CH_3)_{s}^{1}(99)$
2849)		2968	41	$\nu(CH_3)^2_{s}(92)$
2840		3			
1909		15			
1873		20			
*1839	}	501	1840	544	v(C2=O7)(88)
1828)	001	1010		
1787		13			
1645	}	318	1648	311	v(C4=C5)(70) + v(C4-O13)(19)
*1632)			-	
1462		25	1470	29	$\delta(CH_3)^{2*}$ as (86)
1455		17	1467	12	$\delta(CH_3)^{2}_{as}(90)$
1442		7	1462	4	$\delta(CH_3)^{1,*}_{as}(85)$
1442		/ {	1454	4	$\delta(CH_3)^{1*}_{as}(61) + \delta(CH_3)^{2}_{s}(25)$
1435		3	1449	5	$\delta(CH_3)_{s}^{2}(69) + \delta(CH_3)_{as}^{1}(23)$
1391		26	1391	18	$\delta(CH_3)_{s}^{1}(82) + \nu(C6-C8)(11)$
1353		4	1332	3	$v(C6-C8)(17) + v(C5-C6)(14) + \delta(CH_3)^{1}_{s}(13) + v(C3-C6)(13)$
1339		11			
*1303)				
1292	}	240	1283	248	v(C4-O13)(20) + v(C3-C4)(19)
1282	J				
*1204)				
1193	}	94	1189	50	$\gamma(CH_3)^{2*}_{as}(40)$
1189)				

1169)	27	∫ 1178	27	γ (C3-H15)(48) + v(C2-C3)(11)
1167	\$	27	1169	28	$\delta(C5-H12)(17) + v(O1-C2)(15)$
1150)		(1149	128	$\delta(C5-H12)(15) + \gamma(CH_3)^{2*}_{as}(14) + \nu(O1-C2)(11) + \gamma(CH_3)^{2**}_{as}(10)$
1144	}	153	1145	25	$\gamma(CH_3)^{2}$ (81)
1139)		1136	19	$\gamma(CH_3)^{2*}_{as}(19) + \delta(C5-H12)(18) + \gamma(CH_3)^{1*}_{as}(14)$
1070		3	1065	2	$\delta(C3-H15)(46) + v(C6-C8)(13)$
1026)		(1021	0	$v(CU)^{1/2}$ (21) + $v(O1)(C2)(17)$
1018	}	98	1021	9	$V(CH_3) = a_{as}(51) + V(O1-C2)(17)$
*1010)		(1015	62	v(013-C14)(48) + v(C3-C4)(11)
971		9	961	6	$\delta(C3-H15)(15) + \delta \operatorname{ring} 2(13) + \nu(C5-C6)(13) + \nu(C2-C3)(10)$
943	}	15	929	6	$v(C2-C3)(23) + \gamma(CH_3)^{1}_{as}(13) + v(C5-C6)(12) + \delta \operatorname{ring} 2 (11)$
937)				
902		4	896	3	$\gamma(CH_3)^{13}_{as}(20) + \nu(C5-C6)(12) + \nu(C3-C6)(11)$
830			001	10	
824	Ì	6	821	10	$\gamma(C2=O7)(23) + \nu(C3-C6)(13) + \gamma(C4-O13)(10) + \gamma(C5-H12)(10)$
81/	,				
794	}	120	782	70	γ(C5-H12)(71)
762	ý	47			
744	}	3	750	57	$v(O1-C2)(23) + v(O1-C6)(21) + \delta \operatorname{ring} 1 (14) + \delta(C2=O7)(15)$
724		7	702	20	v(O1-C6)(23)
647		11	634	21	$v(O1-C6)(19) + \delta \operatorname{ring} 1 (19)$
594)				
586	}	14	576	16	$\delta \operatorname{ring} 2(21) + v(C6-C8)(20) + v(C4-O13)(11) + v(C3-C4)(10)$
556		3	535	9	γ (C4-O13)(45) + γ (C2=O7)(20)
			517	6	$\delta(O13-C14)(28) + \delta(C4-O13)(23) + \delta(C2=O7)(18)$
			484	2	$\delta(C2=O7)(17) + \tau$ butterfly (15) + $\delta(C6-C8)(11)$
			394	10	τ butterfly (28) + v(O1-C6)(16) + δ (C2=O7)(15)
			322	2	γ(C6-C8)(46)
			296	1	$\delta(C6-C8)(43) + \delta(O13-C14)(24)$
			213	0.1	<i>twist</i> $(CH_3)^1$ (93)
			183	1	$\delta(C6-C8)(28) + \delta(C4-O13)(24) + \delta(O13-C14)(21)$
			164	1	<i>twist</i> $(CH_3)^2(44) + \gamma(C6-C8)(13) + \tau \operatorname{ring} 2 (12)$
			128	3	τ ring 1 (43) + γ (C2=O7)(16) + γ (C6-C8)(13)
			107	2	<i>twist</i> $(CH_3)^2(36) + \gamma(C4-O13)(23) + \tau \operatorname{ring} 2(18) + \tau \operatorname{butterfly}(10)$
			58	5	τ (C4-OCH ₃) (97)

^b PED's lower than 10% are not included. Definition of internal coordinates is given in Table S3.

Asterisks indicate the bands assigned to the rotamer IV.

Calculated	DFT(B3LY	(P)/6-311++G(d, p)
$\widetilde{\nu}^{a}$	\mathbf{A}^{th}	PED ^b (%)
3162	5	v(C5-H12)(99)
3091	12	$\nu(CH_3)^{2} * *_{as} (68) + \nu(CH_3)^{2} *_{as} (24)$
3067	7	v(C3-H15)(100)
3050	14	$v(CH_3)^{1,*}a_{as}(99)$
3037	12	$v(CH_3)^{1}{}_{as}(98)$
3029	25	$\nu(CH_3)^{2*}_{as}(75) + \nu(CH_3)^{2**}_{as}(25)$
2974	14	$v(CH_3)^{1}_{s}(99)$
2964	38	$v(CH_3)^2$ (92)
1850	569	v(C2=O7)(88)
1635	297	v(C4=C5)(65) + v(C4-O13)(23)
1469	11	$\delta(CH_3)^{2}_{as}(68) + \delta(CH_3)^{2}_{as}(20)$
1462	3	$\delta(CH_3)^{1,*}_{as}(81)$
1459	13	$\delta(CH_3)^{2*}_{as}(71) + \delta(CH_3)^{2*}_{as}(22)$
1453	4	$\delta(CH_3)^{1,*}_{as}$ (78)
1437	13	$\delta(\mathrm{CH}_3)^2_{\mathrm{s}}(89)$
1391	18	$\delta(CH_3)_{s}^{1}(83) + \nu(C6-C8)(11)$
1329	15	$v(C6-C8)(17) + v(C3-C6)(14) + \delta(CH_3)^{1}_{s}(11) + v(C5-C6)(11)$
1293	200	v(C3-C4)(28) + v(C4-O13)(13) + v(C5-C6)(10)
1200	45	$\gamma(CH_3)^{2}$, as (46) + $\gamma(CH_3)^{2}$ as (15)
1181	7	γ(C3-H15)(56)
1161	87	$\nu(O1-C2)(24) + \gamma(CH_3)^{1,*}_{as}(11)$
1148	28	$\gamma(CH_3)^{2*}_{as}(20) + \gamma(CH_3)^{1*}_{as}(16) + \nu(C3-C6)(11) + \gamma(CH_3)^{2*}_{as}(10)$
1147	10	$\gamma(CH_3)^{2^{*}}_{as}$ (62)
1136	56	$\delta(C5-H12)(43) + \gamma(CH_3)^{1,*}_{as}(11)$
1071	10	$\delta(C3-H15)(44) + \nu(C6-C8)(12) + \delta \operatorname{ring} 2 (11)$
1017	45	$\gamma(CH_3)^{1,*}_{as}(27) + \nu(O1-C2)(17)$
1006	43	v(O13-C14)(44) + v(C3-C4)(17)
962	5	$v(O13-C14)(18) + \delta(C3-H15)(17) + \delta \operatorname{ring} 2(13) + v(C5-C6)(13)$
930	19	v(C2-C3)(27)
899	17	$\gamma(CH_3)^{1*}_{as}(21) + \nu(C5-C6)(19)$
815	8	$\gamma(C2=O7)(24) + \nu(C3-C6)(16) + \gamma(C4-O13)(10)$
775	119	γ (C5-H12)(62) + ν (O1-C6)(11)

Table S5 Calculated vibrational frequencies, intensities and potential energy distributions (PED) for 4-methoxy-6-methyl-1-oxa-2-oxobicyclo[2.2.0]hex-4-ene isomer IV; (wavenumbers (\tilde{v}) in cm⁻¹, theoretical intensities (Ath) in km mol⁻¹).

759	31	$v(O1-C2)(20) + v(O1-C6)(16) + \delta(C2=O7)(11)$
733	25	v(O1-C6)(22)
674	7	$\delta \operatorname{ring} 2 (20) + \nu(O1-C6)(15) + \delta \operatorname{ring} 1 (11)$
595	8	$v(C6-C8)(30) + \delta \operatorname{ring} 1 (15) + \delta \operatorname{ring} 2 (11)$
556	10	γ (C4-O13)(45) + γ (C2=O7)(21)
488	4	$\delta(C2=O7)(28) + v(C2-C3)(11) + \tau$ butterfly (10)
451	2	δ (C4-O13) (22) + δ (O13-C14)(17) + ν (C3-C4)(16) + δ ring 2 (11)
421	5	τ butterfly (31) + δ (C2=O7)(16) + ν (O1-C6)(11)
334	3	γ(C6-C8)(40)
271	4	$\delta(C6-C8)(42) + \delta(O13-C14)(18)$
210	0.2	<i>twist</i> (CH ₃)1 (89)
197	3	<i>twist</i> $(CH_3)^2 (36) + \tau \operatorname{ring} 2 (15) + \tau (C4-OCH_3)(13) + \delta (C6-C8)(13)$
181	3	$\delta(C4-O13)(33) + \delta(O13-C14)(27) + \gamma(C6-C8)(10)$
145	1	<i>twist</i> $(CH_3)^2(37) + \tau(C4-OCH_3)(27) + \tau \text{ ring } 1 (12)$
129	0.3	$\tau \operatorname{ring} 1 (34) + \gamma (\text{C6-C8})(19) + twist (\text{CH}_3)^2 (15) + \tau \operatorname{ring} 2 (15) + \gamma (\text{C2=O7})(10)$
84	4	τ (C4-OCH ₃)(48) + γ (C4-O13)(20) + τ butterfly (12)

^b PED's lower than 10% are not included. Definition of internal coordinates is given in Table S3.

$S_1 = r_{1,2}$	v(O1-C2)
$S_2 = r_{2,3}$	v(C2-C3)
$S_3 = r_{3,4}$	v(C3-C4)
$\mathbf{S}_4 = \mathbf{r}_{4,5}$	v(C4-C5)
$S_5 = r_{5,6}$	v(C5=C6)
$\mathbf{S}_6 = \mathbf{r}_{6,1}$	v(O1-C6)
$\mathbf{S}_7 = \mathbf{r}_{7,2}$	v(C2=O7)
$\mathbf{S}_8 = \mathbf{r}_{8,6}$	v(C6-C8)
$S_9 = (3^{-1/2})(r_{9,8} + r_{10,8} + r_{11,8})$	$\nu(CH_3)^{1}{}_{s}$
$S_{10} = (6^{-1/2})(2r_{11,8} - r_{10,8} - r_{9,8})$	$\nu(CH_3)^{1}$ as
$S_{11} = (2^{-1/2})(r_{10,8} - r_{9,8})$	$\nu(CH_3)^{1,*}_{as}$
$S_{12} = r_{12,5}$	v(C5-H12)
$S_{13} = r_{13,4}$	v(C4=O13)
$S_{14} = (2^{-1/2})(r_{14,3} + r_{15,3})$	$\nu(CH_2)_s$
$\mathbf{S}_{15} = (2^{-1/2})(\mathbf{r}_{14,3} - \mathbf{r}_{15,3})$	$\nu(CH_2)_{as}$
$S_{16} = (6^{-1/2})(\beta_{2,6,1} - \beta_{1,5,6} + \beta_{6,4,5} - \beta_{5,3,4} + \beta_{4,2,3} - \beta_{3,1,2})$	δ ring 1
$S_{17} = (12^{-1/2})(2\beta_{2,6,1} - \beta_{1,5,6} - \beta_{6,4,5} + 2\beta_{5,3,4} - \beta_{4,2,3} - \beta_{3,1,2})$	δ ring 2
$S_{18} = (1/2)(\beta_{1,5,6} - \beta_{6,4,5} + \beta_{4,2,3} - \beta_{3,1,2})$	δ ring 3
$S_{19} = (2^{-1/2})(\beta_{7,1,2} - \beta_{7,3,2})$	δ(C2=O7)
$S_{20} = (2^{-1/2})(\beta_{8,1,6} - \beta_{8,5,6})$	δ(C6-C8)
$S_{21} = (6^{-1/2})(\beta_{9,10,8} + \beta_{10,11,8} + \beta_{11,9,8} - \beta_{9,6,8} - \beta_{10,6,8} - \beta_{11,6,8})$	$\delta(CH_3)^{1}{}_{s}$
$S_{22} = (6^{-1/2})(2\beta_{9,10,8} - \beta_{10,11,8} - \beta_{11,9,8})$	$\delta(CH_3)^{1}$ 'as
$S_{23} = (2^{-1/2})(\beta_{10,11,8} - \beta_{11,9,8})$	$\delta(CH_3)^{1,*}as$
$S_{24} = (6^{-1/2})(2\beta_{11,6,8} - \beta_{10,6,8} - \beta_{9,6,8})$	$\gamma(CH_3)^{1}$ 'as
$S_{25} = (2^{-1/2})(\beta_{10,6,8} - \beta_{9,6,8})$	$\gamma(CH_3)^{1,*}as$
$S_{26} = (2^{-1/2})(\beta_{12,6,5} - \beta_{12,4,5})$	δ(C5-H12)
$S_{27} = (2^{-1/2})(\beta_{13,5,4} - \beta_{13,3,4})$	δ(C4=O13)
$S_{28} = \beta_{14,15,3}$	δ scissor (CH ₂)
$S_{29} = (1/2)(\beta_{14,2,3} - \beta_{15,2,3} + \beta_{14,4,3} - \beta_{15,4,3})$	δ rocking (CH ₂)
$S_{30} = (1/2)(\beta_{14,2,3} + \beta_{15,2,3} - \beta_{14,4,3} - \beta_{15,4,3})$	δ wagging (CH ₂)
$S_{31} = (1/2)(\beta_{14,2,3} - \beta_{15,2,3} - \beta_{14,4,3} + \beta_{15,4,3})$	δ twist (CH ₂)
$S_{32} = (6^{-1/2})(\tau_{6,1,2,3} - \tau_{1,2,3,4} + \tau_{2,3,4,5} - \tau_{3,4,5,6} + \tau_{4,5,6,1} - \tau_{5,6,1,2})$	γ ring 1

Table S6 Internal coordinates used in the normal mode analysis for the tautomer VI of 4-hydroxy-6-methyl- α -pyrone . (Atom numbering as in Scheme S1)

γ ring 2
γ ring 3
<i>twist</i> $(CH_3)^1$
γ(C2=O7)
γ(C6-C8)
γ(C5-H12)
γ(C4=O13)

 $r_{i,j}$ is the distance between atoms A_i and A_j ; $\beta_{i,j,k}$ is the angle between vectors A_kA_i and A_kA_j ; $\tau_{i,j,k,l}$ is the dihedral angle between the plane defined by A_i , A_j , A_k and the plane defined by A_j , A_k , A_l atoms; $\gamma_{i,j,k,l}$ is the angle between the vector A_kA_i and the plane defined by atoms A_j , A_k , A_l .

Experiment	al		Calc	ulated ^a			
Ar matrix			DFT	(B3LYP)/	/6-311++G	(d,p)	
$\widetilde{\mathbf{V}}^{\mathrm{b}}$		I ^b	form		$\widetilde{\mathbf{V}}^{\ \mathrm{c}}$	\mathbf{A}^{th}	PED ^d
3614)	124	V		3737	76	v(O13-H14)(100)
3609	5						
3053		1	V	1	3163	1	v(C5-H12)(99)
3018		7	V		3132	2	v(C3-H15)(100)
2975		6	\mathbf{V}	Į	3069	10	$v(CH_3)^{1*}_{as}(97)$
2936		7	\mathbf{V}		3029	5	$v(CH_3)^{1,*}a_s$ (100)
2853		4	V		2976	9	$v(CH_3)_{s}^{1}(97)$
1824)						
1814	ļ	96	VI		1823	363	v(C2=O7)(89)
1802	Í						
1766	,	743	V		1776	751	v(C2=O7)(81) + v(C2-C3)(10)
1705)	87	VI		1714	418	v(C4=O13)(88)
1699	}						
1665)	234	V		1650	229	v(C5=C6)(45) + v(C3=C4)(21)
1657		31	VI		1644	228	v(C5=C6)(69)
1613		9					
1603	١						
1593							
1591	}	286	V		1576	298	v(C3=C4)(39) + v(C4-C5)(17) + v(C5=C6)(16)
1589							
1507	,	4					
1527		4					
1497	`	0					
1472	Ì	64	V		1469	56	$8(CH)^{1}$, (20) + $y(C4, C5)(12)$
1407)	04	·		1407	50	0(C113) as (59) + 0(C4-C3)(15)
1441		4	VI		1449	18	$\delta(CH_3)^{1}_{as}$ (85)
1434		10	V		1441	9	$\delta(CH_3)^{1,*}_{as}(91)$
1432		2	VI		1439	10	$\delta(CH_3)^{1,*}_{as}(91)$
1427		1	V		1436	2	$\delta(CH_3)^{1*}_{as}(48) + \delta(C3-H15)(10)$
1390)		VI	Ş	1392	9	δ scissor (CH ₂)(97)
1389	ſ	18	VI)	1390	37	$\delta(CH_3)^{1}_{s}(87)$
1387		4	V		1391	3	$\delta(CH_3)^{1}_{s}(91)$
1380		1					

Table S7 Experimental wavenumbers \tilde{v} (cm⁻¹), integral intensities *I* (relative) of the infrared bands of 4-hydroxy-6-methyl- α -pyrone compared with theoretical^a wavenumbers \tilde{v} (cm⁻¹), absolute intensities Ath (km mol⁻¹) and potential energy distributions (%) calculated for tautomers V and VI.

1361		1				
1350		1				
1340		54	VI	1329	211	$v(O1-C6)(19) + \delta(C5-H12)(18) + v(C4-C5)(17)$
1285		9				
1270		9	VI	1271	27	δ wagging (CH ₂)(71) + $ν$ (C3-C4)(11)
1264		17	VI	1251	147	$\delta(C5-H12)(28) + \nu(C4-C5)(15) + \delta(C4=O13)(15)$
1262	١					
1253						
1252		173	V	1247	176	ν(C4-O13)(28) + δ(C3-H15)(33)
1249						
1248						
	/					
1226		2				
1203	}					
1199)	70	V	1187	73	$\delta(O13-H14)(54) + \delta(C3-H15)(13)$
1189		5				
1167		4	VI	1157	13	$v(C6-C8)(32) + \delta(C5-H12)(23) + v(O1-C6)(10)$
1162)					
1158	5	44	V	1154	63	$\delta(C5-H12)(39) + \nu(C4-O13)(19)$
1140		41	V	1114	53	$v(C2-C3)(32) + \delta(C3-H15)(17) + v(C8-C6)(11)$
1128		28				
1120		9	VI	1076	156	v(C2-C3)(26) + v(O1-C2)(18) + v(C4-C5)(10)
1111		2				
1099		3				
1042		6	V	1040	4	$\gamma(CH_3)^{1,*}_{as}(78) + \gamma(C6-C8)(14)$
1034		2	VI	1043	4	$\gamma(CH_3)^{1,*}_{as}(76) + \gamma(C6-C8)(16)$
1031)	20	V	1022	18	$\gamma(CH_3)^{1*}_{as}$ (57)
1030	Ĵ					
1024		3	VI	1019	11	$\gamma(CH_3)^{1'}_{as}(65)$
991)					
989	}	23	VI	977	108	$v(O1-C6)(36) + \delta \operatorname{ring} 1 (23) + v(O1-C2)(13)$
987		170	V	975	63	$v(O1-C6)(38) + \delta \operatorname{ring} 1(21) + v(C8-C6)(13)$
983)	78	V	972	3	$v(C4-C5)(34) + \delta \operatorname{ring} 1 (20) + v(C3=C4)(10)$
980	Ş					
928		8	VI	932	20	δ rocking (CH ₂)(50) + γ (C4=O13)(23) + γ (C2=O7)(17)
891		7	VI	876	9	$v(C3-C4)(34) + \delta \operatorname{ring} 1 (21) + v(C4-C5)(19)$
842		46	V	800	67	$v(O1-C2)(55) + \delta \operatorname{ring} 1 (15)$
837		25	V	796	46	γ (C5-H12)(92) + γ (C4-O13)(15) + γ (C3-H15)(10)
821		9	VI	820	47	$v(O1-C2)(37) + v(C2-C3)(19) + \delta ring 1 (15)$
814		71	V	791	32	γ (C3-H15)(77) + γ (C2=O7)(27) + γ (C5-H12)(10)
680		3	V	665	1	γ (C4-O13)(49) + γ ring 1 (32)
617		0.4	V	602	2	δ ring 1 (19) + v(O1-C2)(15)

573		3	V	563	4	$\delta(C2=O7)(41) + \delta(C4-O13)(17)$
515		3	V	511	5	δ ring 3 (65) + ν(C8-C6)(10)
478		2				
441)					
434	ļ					
428		94	V	439	109	τ(C4-OH)(97)
)					

^a Tables with full IR spectra calculated for tautomers V and VI are given in Tables S8 and S9.

^b Italized wavenumbers and intensities indicate bands assigned to form **VI**.

^c Theoretical positions of absorption bands were scaled by a factor of 0.98.

^d PED's lower than 10% are not included. Definition of internal coordinates is given in Tables S1 and S6.

Calculated DFT(B3LYP)/6-311++G(d, p)					
$\widetilde{\nu}^{a}$	\mathbf{A}^{th}	Sym.	PED ^b (%)		
3737	76	A'	v(O13-H14)(100)		
3163	1	A'	v(C5-H12)(99)		
3132	2	A'	v(C3-H15)(100)		
3069	10	A'	$v(CH_3)^{1}_{as}$ (97)		
3029	5	A''	$\nu(CH_3)^{1,\gamma}_{as}$ (100)		
2976	9	A'	$v(CH_3)_{s}^{1}(97)$		
1776	751	A'	v(C2=O7)(81) + v(C2-C3)(10)		
1650	229	A'	v(C5=C6)(45) + v(C3=C4)(21)		
1576	298	A'	v(C3=C4)(39) + v(C4-C5)(17) + v(C5=C6)(16)		
1469	56	A'	$\delta(CH_3)^{1,as}(39) + \nu(C4-C5)(13)$		
1441	9	A''	$\delta(CH_3)^{1,*}_{as}(91)$		
1436	2	A'	$\delta(CH_3)^{1,as}(48) + \delta(C3-H15)(10)$		
1391	3	A'	$\delta(CH_3)^{1}_{s}(91)$		
1337	6	A'	$\delta(C5-H12)(26) + \nu(O1-C6)(24) + \nu(C2-C3)(10)$		
1247	176	A'	$v(C4-O13)(28) + \delta(C3-H15)(33)$		
1187	73	A'	$\delta(O13-H14)(54) + \delta(C3-H15)(13)$		
1154	63	A'	$\delta(C5-H12)(39) + \nu(C4-O13)(19)$		
1114	53	A'	$v(C2-C3)(32) + \delta(C3-H15)(17) + v(C8-C6)(11)$		
1040	4	A''	$\gamma(CH_3)^{1,*}_{as}(78) + \gamma(C6-C8)(14)$		
1022	18	A'	$\gamma(CH_3)^{1}$, as (57)		
975	63	A'	$v(O1-C6)(38) + \delta \operatorname{ring} 1(21) + v(C8-C6)(13)$		
972	3	A'	$v(C4-C5)(34) + \delta \operatorname{ring} 1 (20) + v(C3=C4)(10)$		
800	67	A'	$v(O1-C2)(55) + \delta ring 1 (15)$		
796	46	A''	γ (C5-H12)(92) + γ (C4-O13)(15) + γ (C3-H15)(10)		
791	32	A''	γ (C3-H15)(77) + γ (C2=O7)(27) + γ (C5-H12)(10)		
702	0.001	A''	$\gamma \operatorname{ring} 1 (27) + \gamma(C2=O7)(62) + \gamma(C3-H15)(15)$		
665	1	A''	γ (C4-O13)(49) + γ ring 1 (32)		
602	2	A'	$\delta \operatorname{ring} 1 (19) + \nu(\text{O1-C2})(15)$		
563	4	A'	$\delta(C2=O7)(41) + \delta(C4-O13)(17)$		
540	0.03	A''	γ (C6-C8)(49) + γ (C4-O13)(20) + γ ring 3 (19)		
511	5	A'	δ ring 3 (65) + v(C8-C6)(10)		
469	1	A'	δ ring 2 (79)		

Table S8 Calculated vibrational frequencies, intensities and potential energy distributions (PED) for 4-hydroxy-6-methyl- α -pyrone tautomer V (wavenumbers ($\tilde{\nu}$) in cm⁻¹, theoretical intensities (Ath) in km mol⁻¹).

439	109	A''	τ(C4-OH)(97)
355	13	A'	$\delta(C4-O13)(49) + \delta(C2=O7)(24)$
283	2	A'	δ(C6-C8)(66)
202	0.2	A''	$\gamma \operatorname{ring} 2(52) + \gamma \operatorname{ring} 3(25) + \gamma \operatorname{ring} 1(10)$
185	7	A''	$\gamma \text{ ring 3 } (55) + twist (CH_3)^1 (23) + \gamma (C6-C8)(18)$
148	0.06	A''	$\gamma \text{ ring } 1(49) + twist (CH_3)^1 (21) + \gamma \text{ ring } 2 (12) + \gamma (C6-C8)(12)$
130	3	A''	<i>twist</i> $(CH_3)^1$ (50) + γ ring 2 (37) + γ ring 3 (11)

^b PED's lower than 10% are not included. Definition of internal coordinates is given in Table S1.

Calculated DFT(B3LYP)/6-311++G(d, p)						
$\widetilde{\nu}^{a}$	A th	PED ^b (%)				
3149	1	v(C5-H12)(99)				
3076	8	$\nu(CH_3)^{1*}_{as}(96)$				
3063	0.1	$\nu(CH_2)_{as}(69) + \nu(CH_2)_s(31)$				
3028	4	$v(CH_3)^{1,*}a_{as}$ (100)				
2976	4	$\nu(CH_3)^{1}_{s}(96)$				
2963	2	$v(CH_2)_s(69) + v(CH_2)_{as}(31)$				
1823	363	v(C2=O7)(89)				
1714	418	v(C4=O13)(88)				
1644	228	v(C5=C6)(69)				
1449	18	$\delta(\mathrm{CH}_3)^{1*}_{\mathrm{as}}(85)$				
1439	10	$\delta(CH_3)^{1,*}_{as}(91)$				
1392	9	δ scissor (CH ₂)(97)				
1390	37	$\delta(\mathrm{CH}_3)^{\mathrm{l}}{}_{\mathrm{s}}(87)$				
1329	211	$v(O1-C6)(19) + \delta(C5-H12)(18) + v(C4-C5)(17)$				
1271	27	δ wagging (CH ₂)(71) + ν(C3-C4)(11)				
1251	147	$\delta(C5-H12)(28) + \nu(C4-C5)(15) + \delta(C4=O13)(15)$				
1175	6	δ twist (CH ₂)(77)				
1157	13	$v(C6-C8)(32) + \delta(C5-H12)(23) + v(O1-C6)(10)$				
1076	156	v(C2-C3)(26) + v(O1-C2)(18) + v(C4-C5)(10)				
1043	4	$\gamma(CH_3)^{1,\gamma}_{as}(76) + \gamma(C6-C8)(16)$				
1019	11	$\gamma(CH_3)^{1}_{as}$ (65)				
977	108	$v(O1-C6)(36) + \delta \operatorname{ring} 1 (23) + v(O1-C2)(13)$				
932	20	δ rocking (CH ₂)(50) + γ (C4=O13)(23) + γ (C2=O7)(17)				
876	9	$v(C3-C4)(34) + \delta \operatorname{ring} 1 (21) + v(C4-C5)(19)$				
824	16	γ(C5-H12)(95)				
820	47	$v(O1-C2)(37) + v(C2-C3)(19) + \delta ring 1 (15)$				
617	3	$\gamma(C2=O7)(33) + \gamma(C4=O13)(29)$				
599	1	$v(C3-C4)(13) + v(O1-C6)(13) + \delta ring 1 (10) + \delta(C2=O7)(10)$				
569	1	$\delta(C2=O7)(31) + \delta(C4=O13)(25)$				
556	1	$\gamma(C6-C8)(42) + \gamma(C2=O7)(16)$				
514	4	δ ring 3 (33) + $γ$ (C4=O13)(15) + $δ$ rocking (CH ₂)(12) + $γ$ (C6-C8)(11)				
462	5	$\delta \operatorname{ring} 2 (59) + \delta \operatorname{ring} 3 (14)$				

Table S9 Calculated vibrational frequencies, intensities and potential energy distributions (PED) for 4-hydroxy-6-methyl- α -pyrone tautomer VI (wavenumbers ($\tilde{\nu}$) in cm⁻¹, theoretical intensities (Ath) in km mol⁻¹).

432	11	δ ring 3 (26) + $δ$ ring 2 (23) + $δ$ rocking (CH ₂)(14) + $γ$ (C2=O7)(10)
381	9	$\delta(C4=O13)(32) + \delta(C2=O7)(25) + \nu(C3-C4)(15) + \nu(C2-C3)(11)$
289	1	δ(C6-C8)(68)
180	1	<i>twist</i> $(CH_3)^1$ (66) + γ ring 2 (11) + γ ring 3 (10)
146	2	$\gamma \operatorname{ring} 3 (30) + twist (CH_3)^1 (24) + \gamma \operatorname{ring} 1 (23) + \gamma (C6-C8)(18)$
119	4	$\gamma \operatorname{ring} 2 (87) + twist (CH_3)^1 (11)$
72	12	γ ring 3 (51) + γ ring 1 (47)

^b PED's lower than 10% are not included. Definition of internal coordinates is given in Table S6.

Table S10 Experimental wavenumbers \tilde{v} (cm⁻¹), integral intensities *I* (relative) of the bands in the infrared spectrum of the photoproduct generated upon UV (λ >320 nm) irradiation of 4-hydroxy-6-methyl- α -pyrone, compared with theoretical wavenumbers \tilde{v} (cm⁻¹), absolute intensities Ath (km mol⁻¹) and potential energy distributions (%) calculated for 4-hydroxy-6-methyl-1-oxa-2-oxobicyclo[2.2.0]hex-4-ene isomer **VIII**.

Experiment	tal		Calculated		
Ar matrix			DFT(B3LY	YP)/6-311	++G(d,p)
$\widetilde{\mathbf{v}}$		Ι	$\widetilde{\mathbf{v}}^{\ a}$	\mathbf{A}^{th}	PED ^b
3608		133	3726	82	v(O13-H14)(100)
3603					
2999)	15 /	3152	5	v(C5-H12)(99)
2987	}				
2942		12	3067	7	v(C3-H15)(100)
2894		2	3051	13	$\nu(CH_3)^{1,\gamma}{}_{as}(99)$
2872		4	3038	11	$v(CH_3)^{1}_{as}(98)$
			2974	13	$v(CH_3)_{s}^{1}(99)$
		1			
1838		551	1853	567	v(C2=O7)(88)
1640)	261	1641	277	v(C4=C5)(71) + v(C4-O13)(19)
1634	}				
1454		5	1461	3	$\delta(CH_3)^{1,*}_{as}$ (83)
1440		3	1453	6	$\delta(CH_3)^{1/2}_{as}(81)$
1393		23	1390	18	$\delta(CH_3)^1_{s}(81) + \nu(C6-C8)(11)$
1383		24	1375	24	δ (O13-H14)(36) + v(C3-C4)(23) + v(C4-O13)(16)
1330		20	1323	27	$v(C6-C8)(20) + v(C5-C6)(19) + \delta(C5-H12)(15) + v(C3-C6)(12) +$
					$\delta(CH_3)^{1}_{s}(12)$
1315		3			
1199		59	1189	53	γ(C3-H15)(51) + δ(O13-H14)(14)
1185)	14	1175	13	$\gamma(CH_3)^{1}_{as}(16) + \nu(O1-C2)(13) + \gamma(C3-H15)(12)$
1183	}				
1166		32	1156	56	$\gamma(CH_3)^{1,\gamma}_{as}(19) + \nu(C3-C6)(16) + \nu(C5-C6)(12)$
1147		95	1141	131	$\delta(C5-H12)(29) + v(C4-O13)(17) + v(O1-C2)(15) + \gamma(C3-H15)(11)$
1132		8			
1112		99	1103	115	$\delta(O13-H14)(27) + \delta(C5-H12)(22) + v(C4=C5)(11)$
1086		23	1063	11	$\delta(C3-H15)(44) + \nu(C6-C8)(13)$
1069)	7			
1065	\$				
1022		38	1014	41	$\gamma(CH_3)^{1,*}_{as}(34) + \nu(O1-C2)(21) + \gamma(CH_3)^{1,*}_{as}(12)$
			971	2	$v(C3-C4)(22) + \delta \operatorname{ring} 2(16) + \delta(C3-H15)(14) + v(C5-C6)(13)$

944)	24	933	14	$v(C2-C3)(33) + \gamma(C3-H15)(11) + v(O1-C2)(10) + \delta ring 1(10)$
941	5				
911	}	3	902	5	$v(C5-C6)(26) + \gamma(CH_3)^{1*}_{as}(25) + \gamma(CH_3)^{1*}_{as}(10)$
905)				
837		7	819	8	$\gamma(C2=O7)(22) + \nu(C3-C6)(16) + \gamma(C4-O13)(11)$
825	}	3			
819)				
789		151	779	112	γ(C5-H12)(61)
770)	25	757	44	$v(O1-C6)(31) + v(O1-C2)(24) + \delta ring 1 (10) + \delta(C2=O7)(10)$
765	Ì				
761	,				
729		4	715	10	$v(O1-C6)(16) + \gamma(C2=O7)(13) + v(C2-C3)(11)$
668		8	662	4	$\delta \operatorname{ring} 1 (20) + \delta \operatorname{ring} 2 (19) + v(C4-O13)(11)$
597		11	586	8	$v(C6-C8)(30) + \delta \operatorname{ring} 2 (19)$
546		5	550	3	γ(C4-O13)(46) + γ(C2=O7)(19)
499)	8	488	15	$\delta(C2=O7)(27) + \nu(C2-C3)(10)$
495)				
450		3	440	4	δ (C4-O13)(31) + δ (C2=O7)(15) + τ butterfly (10)
408)				
404)	28	423	85	τ (C4-OH)(73) + τ butterfly (11)
			376	48	δ (C4-O13)(22) + τ butterfly (19) + τ (C4-OH)(15)
			326	3	γ(C6-C8)(47)
			247	1	$\delta(C6-C8)(61) + \delta(C4-O13)(14)$
			213	0.04	<i>twist</i> $(CH_3)^1$ (93)
			142	1	τ ring 2 (40) + γ (C4-O13)(23) + γ (C6-C8)(21) + τ butterfly (10)
			133	2	τ ring 1 (47) + γ (C2=O7)(22) + τ butterfly (13)

^b PED's lower than 10% are not included. Definition of internal coordinates is given in Table S3.