Species with negative electron affinity and standard DFT methods

D. Mariano A. Vera and Adriana B. Pierini*

Supplementary Material

Part 1. Calculation Details

Table S1. Detailed results with 6-31+G* and 6-311+G(2df,p) basis sets*

		B3LYP/6-31+G*									B3LYP/6-311+G(2df,p) // B3LYP/6-31+G*					
species	type	μ	LVUMO	E(neutral)	ZPE	E(vertica	E(anion)	ZPE	VEA	AEA	E(n)	E(vertica	E(anion)	VEA	AEA	
						anion)						anion)				
11,1-dichloroethylene	V İ	1.51	-0.95	-997.7811	0.0336	-997.7453			-0.975		-997.8702	-997.8382		-0.873		
2 1,3-cyclohexadiene	V	0.49	-0.91	-233.4288	0.1225	-233.3924			-0.992		-233.4950	-233.4620		-0.898		
3 acetaldehyde	V	2.99	-1.08	-153.8397	0.0557	-153.7893			-1.372		-153.8891	-153.8414		-1.298		
4 adenine N	v	2.46	-0.92	-467.3399	0.1120	-467.3100			-0.847		-467.4779	-467.4507		-0.740		
5 bro mobe nzene	V	1.85	-0.79	-2803.3846		-2803.3498			-0.946		-2805.8651	-2805.8331		-0.870		
6 butadiene	v	0.00	-1.10	-156.0011	0.0852	-155.9700			-0.846		-156.0487	-156.0207		-0.763		
7 chlorobenzene	v	1.89	-0.78	691.8549		-691.8149			-1.091		691.9511	-691.9151		-0.980		
8 chloroethylene	v	1.59	-0.59	-538.1910	0.0428	-538.1390			-1.417		-538.2480	-538.1995		-1.320		
9 chloroform	V	1.25	-1.62	-1419.2843	0.0199	-1419.2720			-0.335		-1419.3940	-1419.3818		-0.331		
10 cis-dichloroethylene	V	2.02	-0.76	-997.7843	0.0342	-997.7348			-1.345		-997.8727	-997.8282		-1.209		
11 cyclopentyl radical	v	0.20	5.44	-195.9017	0.1261	-195.8723	-195.8892	0.1233	-0.799	-0.263	-195.9572	195 9315	195.9473	-0.698	-0.192	
12 cytosine	v	6.85	-1.32	394.9498	0.0984	-394.9266	-394.9439	0.0944	-0.631	-0.051	-395.0752	-395.0550	-395.0687	-0.547	-0.068	
13 dimethylaminomethyl radical	v	1.33	-0.86	173 8273	0.1073	173.7962	-173.8096	0.1042	-0.845	-0.399	-173.8807	173 8524	173.8643	-0.768	-0.364	
14 ethviene	v	0.00	-0.22	-78.5933	0.0511	78.5281		•••••	-1.774		-78.6192	-78.5565		1.706		
15 ethyl radical	v	0.34	-1.52	-79.1629	0.0595	-79.1415	-79.1492	0.0578	-0.580	-0.323	-79.1879	-79.1698	-79.1769	-0.495	-0.253	
16 fluorobenzene	v	1.75	-0.75	331 5012	0.0924	331,4576	-331.4640	0.0841	-1.187	-0.788	331,5978	331 5577	331,5622	1.092	-0.743	
17 isopropyl radical	v	0.25	-1 20	118 4837	0.0882	118 4547	118 4686	0.0860	-0 791	-0 352	118 5 199	118 4943	118 5068	-0.698	-0 296	
18 naphtalene	v	0.00	1.33	385,9069	0.1476	385,8930	385.8973	0.1414	-0.378	-0.093	-386.0107	-386.0003	386.0030	-0.283	-0.039	
19 norbornadiene	v	0.04	0 5 6	271 4878	0 1286	-271 4460		•••••	1 1 3 6		271 5622	271 5231		1 0 6 5		
20 nyrazine	v	0.00	1 83	-264 3286	0.0769	264 3186	-264 3256	0 0726	-0 270	0.036	-264 4021	-264 3946	-264 4002	0 203	0.068	
21 nyridazine	v	4 43	1 80	-264 2989	0.0763	-264 2876	-264 2954	0.0713	-0.308	0.039	264 3725	264 3635	264 3700	-0 244	0.067	
22 pyridine	v	2 38	1.00	-248 2958	0.0889	-248 2616	201.2551	0.0715	-0.932	0.055	248 3648	-248 3337	201.5700	-0.846	0.007	
23 pyrimidine	v	2 48	1 57	-264 3351	0.0772	-264 3156	-264 3230	0 0717	-0 531	-0 179	-264 4087	-264 3917	-264 3977	-0.461	-0 149	
24 styrene	v	0.21	1 2 9	-309 6613	0 1335	-309 6453	20	0.07 1.	-0 434	0.1.5	-309 7477	-309 7351	201.5577	-0 342	0.1.0	
25 t-buthv	v	0.27	-4 75	157 8045	0.1355	157 7761	-157 7950	0 1143	-0 772	-0 186	157 8515	-157 8264	-157 8432	-0.684	-0 152	
26 thiophene	v	0.55	-0.64	-553 0114	0.0667	-552 9628	10.0000	0.11.10	-1 322	0.100	-553 0895	-553 0438	197.10.191	-1 242	0.101	
27 thymine	v	4 63	154	-454 1581	0 1149	-454 1444	-454 1587	0 1102	-0 372	0 145	-454 3001	-454 2890	-454 3004	0 301	0 137	
28 trans-dichloroethylene	v	0.00	-0.94	-997 7839	0.0339	-997 7433	10 112001		-1 105	0.2.5	-997 8722	-997 8361		-0.984	0.10.	
29 trichloroethylene	v	0.94	-1 12	-1457 3716	0.0248	-1457 3396			-0.872		-1457 4923	-1457 4652		-0 739		
30 uracil	v	4 67	168	-414 8377	0.0871	-414 8246	-414 8401	0.0827	-0355	0 184	414 9689	-414 9588	-414 9708	-0 274	0 172	
31 1 2 4-trimethylbenzene	ŇV	0 40	0.21	350 2132	0 1836	-350 1715	-350 1717	0 1817	-1 134	-1079	350 3106	-350 2735	350 2734	1 0 0 8	-0.961	
32 acetone	NV	3 1 9	-0.75	-193 1663	0.0838	-193 1200	550127 27	0.101.	-1 2 5 8	1.07.5	-193 2267	-193 1882	550.275	-1 048	0.501	
33 aniline	NV	1.63	0.28	287.6161	0.1171	-287.5757			-1.099		-287.7028	-287.6654		1.018		
34 anisole	NV	1 3 9	-0.37	-346 7855	0 1333	-346 7440			-1 129		-346 8870	346 8512		-0975		
35 cis-butene	NV	0.03	0.33	-157 2299	0 1079	-157 1767			-1 448		-157 2778	-157 2341		1 1 90		
36 cvclohexene	NV	0.35	0.46	234.6562	0.1466	-234.6094			-1.272		234,7231	-234.6826		1 101		
37 furan	NV	0 73	-0.07	-230 0314	0 0700	-229 9794			-1 417		-230 1010	-230 0560		1 2 2 6		
38 m-xvlene	NV	0.36	-0.29	310 8956	0 1554	-310 8554			-1 092		-310 9822	-310 9457		-0 9 92		
39 o-xvlene	NV	0.67	-0.20	310 8950	0 1562	-310 8510			-1 198		-310 9815	310 9431		1 0 4 6		
40 phenol	NV	1 42	-0.48	-307 4803	0 1045	-307 4399			-1 099		-307 5753	-307 5388		-0 9 9 4		
41 propene	NV	0.43	0.10	117 9139	0.0798	117.8548			-1.610		117,9509	117 9020		1.328		
42 pyrrole	NV	1 93	0.65	210 1778	0.0825	-210 1375			-1 096		210 2417	-210 2060		0973		
43 trans-butene	NV	0.00	0.42	157 2336	0.1081	157.1792			-1.480		157.2815	157 2301		-1.397		
44 trimethylethylene	NV	0.31	0.37	-196.5480		196 4992			-1.329		196.6068	196 5657		-1.117		
45 CO2	NV	0.00	-0.56	188.5904	0.0116	188,5565	-188.5805	0.0083	-0.921	-0.182	-188.6569	188.6233	188.6415	0.915	-0.332	
46 guanine	NV	6.80	-0.58	-542 5764	0.1168	-542 5606	542 5621	0.1139	0.431	0.311	-542 7433	-542 7286	-542 7297	-0.400	-0.291	
* Diple moment in Debves, LVUMO	enera	y in e	V, Eneraie	es in Hartrees	, VEA an	d AEA in eV				0.0.2.2						

 * Dipole moment in Debyes, LVUMO energy in eV, Energies in Hartrees, VEA and AEA in eV

Figure S1. Correlation between the experimental and B3LYP/6-31+G* data. See text and Figure 1.

Table S2. Detailed results with AUG-CC-PVDZ and AUG-CC-PVTZ basis sets*															
		B3LYP/AUG-cc-pVDZ B3LYP/AUG-CC-PVTZ // B3LYP/AUG-CC-PVDZ													
				E(neutral)	ZPE	E(vertic a	E(anion)	ZPE	VEA	AEA	E(n)	E(vertical	E(anion)	VEA	AEA
species	type	μ	LVUMO			anion)						anion)			
11,3-cyclohexadiene	v	0.50	-1.01	-233.4449	0.1216	-233.4261			-0.511		-233.5067	-233.4916		-0.411	
9 chloroform	v	1.11	-1.55	-1419.3600	0.0196	-1419.3492			-0.293		-1419.4135	-1419.4046		-0.243	
11 cyclopentyl radical	v	0.19		-195.9147	0.1249	-195.8921	-195.9085	0.1224	-0.614	-0.098	-195.9678	-195.9469	-195.9609	-0.567	-0.117
13 dimethylaminomethyl radical	v	1.30		-173.8398	0.1059	-173.8189	-173.8276	0.1030	-0.568	-0.252	-173.8902	-173.8711	-173.8776	-0.519	-0.265
15 ethyl radical	v	0.32		-79.1668	0.0588	-79.1495	-79.1576	0.0568	-0.470	-0.194	-79.1929	-79.1772	-79.1837	-0.428	-0.194
17 isopropy radica	v	0.17		-118.4897	0.0870	-118.4684	-118.4803	0.0850	-0.578	-0.200	-118.5271	-118.5074	-118.5172	-0.535	-0.213
23 pyrimidine	v	2.38	-1.62	-264.3566	0.0767	-264.3393			-0.469		264,4194	-264.4071		-0.335	
24 styrene	v	0.20	-1.38	-309.6830	0.1330	-309.6705			-0.339		-309.7624	-309,7509		-0.311	
25 t-buthy	v	0.19		-157.8125	0.1154	-157.7953	-157.8085	0.1127	-0.467	-0.037	-157.8608	-157.8449	-157.8560	-0.431	-0.055
3 acetaldehyde	NV	2.91	-1.15	-153.8532	0.0550	-153.8342			-0.517		-153.8962	-153.8812		-0.408	
32 acetone	NV	3.11	-0.81	-193.1816	0.0827	-193.1664	-193.1665	0.0814	-0.414	-0.375	-193.2359	-193.2238	-193.2236	-0.328	-0.297
33 aniliine	NV	1.57	-0.40	287.6438	0.1164	-287.6289			-0.405		-287.7167	-287.7052		-0.313	
34 anisole	NV	1.31	0.49	-346.8126	0.1323	-346.7962			-0.445		-346.9028	-346.8900		-0.347	
5 bromoben zene	NV	1.86	-0.91	-2805.8307	0.0900	-2805.8160	-2805.8438	0.0865	-0.398	0.453	-2805.9609	-2805.9494	-2805.9715	-0.311	0.385
6 butadiene	NV	0.00	-1.19	-156.0121	0.0849	-155.9875			-0.669		-156.0569	-156.0380		-0.517	
7 chlorobenzene	NV	1.89	-0.87	-691.8948	0.0906	-691.8786	691.8788	0.0892	-0.442	-0.398	-691.9672	-691.9544	691.9542	-0.349	-0.315
35 cis-butene	NV	0.31	0.19	-157.2389	0.1068	-157.2188			-0.546		-157.2868	-157.2704		-0.444	
36 cyclohexene	NV	0.37	0.38	-234.6720	0.1454	-234.6535			-0.504		-234.7354	-234.7205		-0.405	
14 ethylene	NV	0.00	-0.34	-78.5984	0.0508	-78.5719	-78.5719	0.0503	-0.720		-78.6237	-78.6029	78.6028	-0.568	-0.555
16 fluorobenzene	NV	1.62	-0.85	-331.5256	0.0918	-331.5078	-331.5080	0.0908	-0.484	-0.454	-331.6124	-331.5982	331.5981	-0.386	-0.364
37 furan	NV	0.67	-0.20	230.0517	0.0695	-230.0304			-0.581		230,1114	-230.0942		-0.467	
19 norbornadiene	NV	0.09	-0.66	-271.5072	0.1276	-271.4881			-0.520		-271.5751	-271.5597		-0.420	
40 phenol	NV	1.27	-0.60	-307.5119	0.1043	-307,4969			-0.408		-307.5897	-307.5780		-0.317	
41 propene	NV	0.43	-0.03	-117.9209	0.0791	-117.8981	-117.8982	0.0785	-0.620	-0.600	-117.9576	-117.9390	-117.9389	-0.507	-0.491
22 pyridine	NV	2.28	-1.14	-248.3142	0.0883	248.2980			-0.440		-248.3756	-248.3630		-0.343	
42 pyrrole	NV	1.84	0.52	-210.1982	0.0822	-210.1820			-0.441		-210.2518	-210.2392		-0.345	
43 trans-butene	NV	0.00	0.28	-157.2425	0.1070	-157.2201			-0.610		-157.2903	-157.2720		0.497	
44 trimethylethylene	NV	0.29	0.28	-196.5592	0,1341	-196.5401			-0.519		-196.6178	-196.6023		-0.420	
30 uraci	NV	4.54	-1.74	-414.8843	0.0868	-414.8805	-414.8813	0.0856	-0.102	-0.046	-414.9845	-414.9831	414.9834	-0.038	0.004
45 CO2	NV	0.00	-0.53	-188.6142	0.0116	-188.5812			-0.898		-188.6632	-188.6355		-0.754	
* Diple moment in Debyes, LVUMC	Diple moment in Debyes, LVUMC energy in eV. Energies in Harrees, VEA and AEA in eV														

Figure S2. Correlation between experimental and calculated electron affinities (B3LYP/AUG-ccpVTZ basis). Same as figure S1.

Figure S3. Koopman's Theorem correlation at the B3LYP/6-31+G* level.

Figure S4. Koopman's Theorem correlation at the B3LYP/AUG-cc-pVDZ level.

Part 2. Structure, Dipole, SOMO diagrmas and spin density of some species under study

Figure S5. Acetone B3LYP/6-31+G*, Non -Valence RA. Top: LUMO of the neutral. Lower left corner: SOMO of the vertical RA. Lower right corner: spin density. The cyan arrow show the dipole orientation.

Figure S6. Neutral and non valence RA obtained at the B3LYP/6-31+G* level for furan presented as in figure S5.

Figure S7. Non valence RA found for phenol (organized as Fig. S5).

Figure S8. Spin density in the trimethylethylene RA.

Figure S9. Ethyl radical and its anions. From top to bottom, SOMO of the neutral, HOMO of the vertical anion and HOMO of the optimized anion.

Part 3. Geometries of all species under study.

All the XYZ coordinates in Angstorms for all the optimized species under study have been gathered in a single ASCII file named Structures-xyz.txt