Table S1. Geometry (Bond Lengths in Å, Angles in °) of the energetically most stable

sha structures.

Parameter	z,z,z,z-isomer (1)	e,e,z,z-isomer(2)	z,z,e,e/z-isomer (3)
C ₂ -C ₃	1.383	1.388	1.383
C ₂ -C ₆	1.407	1.401	1.412
C ₃ -C ₄	1.401	1.394	1.400
C ₄ -C ₅	1.384	1.391	1.382
C ₅ -C ₇	1.403	1.395	1.403
C ₆ -C ₇	1.417	1.405	1.426
C ₆ -C ₈	1.473	1.496	1.476
C ₇ -O ₁₀	1.343	1.375	1.340
C ₈ -O ₉	1.246	1.235	1.241
C ₈ -N ₁	1.365	1.353	1.386
N ₁ -O ₁₆	1.398	1.392	1.405
C ₂ -H ₁₁	1.084	1.083	1.078
C ₃ -H ₁₂	1.083	1.083	1.083
C ₄ -H ₁₃	1.084	1.084	1.085
C ₅ -H ₁₄	1.083	1.086	1.083
O ₁₀ -H ₁₅	0.983	0.963	0.988
O ₁₆ -H ₁₈	0.979	0.980	0.966
N ₁ -H ₁₇	1.009	1.009	1.015
O ₉ …H ₁₅	1.740	-	1.657
O ₉ …H ₁₈	1.955	1.969	-
O ₁₀ …H ₁₇	-	1.989	-
C ₂ -C ₃ -C ₄	119.2	119.4	119.6
C ₂ -C ₆ -C ₇	118.9	118.0	118.0
C ₃ -C ₄ -C ₅	120.8	120.0	120.5
C ₄ -C ₅ -C ₇	120.4	120.3	120.6
C ₂ -C ₃ -H ₁₂	120.3	120.1	119.9
C ₃ -C ₄ -H ₁₃	119.8	120.5	120.0
C ₄ -C ₅ -H ₁₄	121.6	120.3	121.7
C ₆ -C ₂ -H ₁₁	119.6	117.1	119.1
C ₆ -C ₈ -O ₉	123.3	122.5	121.7

C ₇ -O ₁₀ -H ₁₅	107.9	110.2	107.2
C ₈ -N ₁ -H ₁₇	120.8	124.5	111.9
C ₈ -N ₁ -O ₁₆	116.0	116.7	123.1
N ₁ -O ₁₆ -H ₁₈	102.1	101.2	104.3
O ₉ …H ₁₅ -O ₁₀	145.7	-	146.7
O ₉ …H ₁₈ -O ₁₆	118.6	118.8	-
O ₁₀ …H ₁₇ -N ₁	-	122.9	-
$C_2-C_6-C_8-N_1$	9.0	171.0	-12.5
$C_4-C_5-C_7-O_{10}$	-179.0	-179.6	179.4
C ₆ -C ₇ -O ₁₀ -H ₁₅	-3.7	179.2	2.7
H_{11} - C_2 - C_3 - H_{12}	-1.4	-0.3	1.1
H_{12} - C_3 - C_4 - H_{13}	-0.7	0.0	0.5
H_{13} - C_4 - C_5 - H_{14}	0.1	0.2	-0.1
H ₁₇ -N ₁ -O ₁₆ -H ₁₈	146.0	162.7	102.6
O ₉ -C ₈ -N ₁ -O ₁₆	-8.7	-8.3	-158.1

Table S2. Definition of internal coordinates used in the normal mode analysis of sha (the

numbering scheme is presented in Fig. 1).

Definition ^{<i>a</i>}	Vibration ^{<i>a</i>}
v ₁	ν (C ₈ -N ₁)
v ₂	$v (N_1 - O_{16})$
V3	$v (N_1 - H_{17})$
V4	ν (C ₂ -C ₃)
ν ₅	ν (C ₂ -C ₆)
ν ₆	$v(C_2-H_{11})$
ν ₇	ν (C ₃ -C ₄)
ν ₈	$v (C_3 - H_{12})$
V9	$v(C_4-C_5)$
v_{10}	ν (C ₄ -H ₁₃)
V ₁₁	$v(C_5-C_7)$
V ₁₂	ν (C ₅ -H ₁₄)
V ₁₃	ν (C ₆ -C ₇)
V ₁₄	ν (C ₆ -C ₈)
V ₁₅	ν (C ₇ -O ₁₀)

V ₁₆	ν (C ₈ -O ₉)
V ₁₇	ν (O ₁₀ -H ₁₅)
V ₁₈	ν (O ₁₆ -H ₁₈)
δ_1	δ (C ₃ -C ₂ -H ₁₁) - δ (C ₆ -C ₂ -H ₁₁)
δ_2	$\delta (C_2 - C_3 - H_{12}) - \delta (C_4 - C_3 - H_{12})$
δ ₃	δ (C ₃ -C ₄ -H ₁₃) - δ (C ₅ -C ₄ -H ₁₃)
δ ₄	$\delta (C_4 - C_5 - H_{14}) - \delta (C_7 - C_5 - H_{14})$
δ ₅	$\delta (C_5 - C_7 - O_{10}) - \delta (C_6 - C_7 - O_{10})$
δ_6	$\delta (C_2 - C_6 - C_8) - \delta (C_7 - C_6 - C_8)$
δ ₇	$ \begin{array}{ c c c c c c c } \delta (C_3 - C_4 - C_5) - \delta (C_4 - C_5 - C_7) + \delta (C_5 - C_7 - C_6) - \delta (C_2 - C_3 - C_4) + \delta (C_3 - C_2 - C_6) - \delta (C_2 - C_6 - C_7) \\ \hline C_7 \end{array} $
δ_8	$\begin{array}{c} 2 \ \delta \ (C_3 - C_2 - C_6) - \delta \ (C_2 - C_3 - C_4) - \delta \ (C_2 - C_6 - C_7) - \delta \ (C_3 - C_4 - C_5) + 2 \ \delta \ (C_4 - C_5 - C_7) - \delta \ (C_5 - C_7 - C_6) \end{array}$
δ9	δ (C ₂ -C ₃ -C ₄) - δ (C ₂ -C ₆ -C ₇) - δ (C ₃ -C ₄ -C ₅) + δ (C ₅ -C ₇ -C ₆)
δ_{10}	δ (C ₇ -O ₁₀ -H ₁₅)
δ_{11}	$\delta (N_1 - O_{16} - H_{18})$
δ_{12}	$2 \delta (C_6 - C_8 - O_9) - \delta (N_1 - C_8 - O_9) - \delta (C_6 - C_8 - N_1)$
δ_{13}	$\delta (N_1 - C_8 - O_9) - \delta (C_6 - C_8 - N_1)$
δ_{14}	$2 \delta (C_8 - N_1 - O_{16}) - \delta (C_8 - N_1 - H_{17}) - \delta (O_{16} - N_1 - H_{17})$
δ_{15}	$\delta (C_8 - N_1 - H_{17}) - \delta (O_{16} - N_1 - H_{17})$
γ1	γ (C ₃ -C ₂ (-H ₁₁)-C ₆)
γ2	γ (C ₂ -C ₃ (-H ₁₂)-C ₄)
γ ₃	γ (C ₃ -C ₄ (-H ₁₃)-C ₅)
γ4	$\gamma (C_4 - C_5 (-H_{14}) - C_7)$
γ5	γ (C ₅ -C ₇ (-O ₁₀)-C ₆)
γ6	$\gamma \left(C_2 - C_6 (-C_7) - C_8 \right)$
γ7	$\gamma (N_1 - C_8(-C_6) - O_9)$
γ8	γ (C ₈ -N ₁ (-H ₁₇)-O ₁₆)
$ au_1$	$ \tau (C_2 - C_6 - C_7 - C_5) - \tau (C_2 - C_3 - C_4 - C_5) - \tau (C_3 - C_2 - C_6 - C_7) + \tau (C_3 - C_4 - C_5 - C_7) + \tau (C_4 - C_3 - C_2 - C_6) - \tau (C_4 - C_5 - C_7 - C_6) $
$ au_2$	$\tau (C_4 - C_3 - C_2 - C_6) - \tau (C_3 - C_2 - C_6 - C_7) - \tau (C_3 - C_4 - C_5 - C_7) + \tau (C_4 - C_5 - C_7 - C_6)$
$ au_3$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ au_4$	$\tau (C_5 - C_7 - O_{10} - H_{15}) + \tau (C_6 - C_7 - O_{10} - H_{15})$
τ ₅	$\tau (C_2 - C_6 - C_8 - N_1) + \tau (C_2 - C_6 - C_8 - O_9) + \tau (C_7 - C_6 - C_8 - N_1) + \tau (C_7 - C_6 - C_8 - O_9)$
τ_6	$\tau (C_6 - C_8 - N_1 - H_{17}) + \tau (C_6 - C_8 - N_1 - O_{16}) + \tau (H_{16} - N_1 - C_8 - O_9) + \tau (H_{17} - N_1 - C_8 - O_9)$
$ au_7$	$\tau (C_8 - N_1 - O_{16} - H_{18}) + \tau (H_{17} - N_1 - O_{16} - H_{18})$

^{*a*} ν, δ, γ, and τ denote stretching, in-plane bending, out-of plane bending, and torsion vibrations, respectively.

Table S3. Assignments of experimental spectrum recorded after photolysis of **sha** in an Ar matrix at 20 K. Harmonic frequencies (in cm⁻¹) and integral intensities (in km/mol) are calculated at B3LYP/6-311++G(d,p) level. Relative intensities are given in parenthesis. Assignment of bands is based on Potential Energy Distributions (PEDs) of normal modes (in percent), defined in Table 2 of supporting information.

v_{exp} (cm ⁻¹)	$v_{calc}^{a,b}$ (cm ⁻¹)	Assignment ^c
501 (3)	508 (0.9)	δ_5 (40), $\delta_6 as.^c$ (10), $\delta_{12} as.$ (6)
528 (7)	523 (3.5)	τ_3 (33), γ_5 (22), τ_1 as. (20), γ_2 (10), γ_4 (5)
556 (1)	559 (0.2)	δ_8 (41), δ_9 <i>as</i> . (19), δ_6 (9), v_5 (7), v_{15} (5)
671 (5)	669 (3.7)	δ_8 (34), δ_9 (14), δ_{12} <i>as.</i> (10), τ_1 <i>as.</i> (8), v_{13} <i>as.</i> (8), v_{14} <i>as.</i> (6)
700 (8)	675 (3.1)	τ_1 (56), γ_5 (18), γ_7 as. (6), γ_3 (5)
735 (2)	735 (0.8)	τ_1 (22), γ_7 (22), τ_4 as. (17), γ_6 (14), γ_5 (12), γ_2 as. (7)
751 (46), 745	742 (48.1)	τ_4 (27), γ_2 <i>as.</i> (25), γ_1 (11), γ_5 (11), γ_3 <i>as.</i> (11), γ_4 <i>as.</i> (9)
788 (5)	770 (4.5)	τ_4 (28), γ_7 (22), γ_6 (12), γ_2 (10), γ_3 (8), γ_1 <i>as.</i> (7), τ_1 (6)
829 (11)	824 (5.7)	δ_7 (20), v_{15} as. (17), δ_9 as. (13), v_{13} as. (13), v_{11} as. (13), δ_{13} as. (5)
857 (2)	849 (0.4)	γ_4 (43), γ_1 (21), τ_1 <i>as.</i> (8), γ_5 <i>as.</i> (8), γ_3 (7)
910 (6)	899 (2.2)	δ_7 (26), δ_{14} as. (22), δ_{13} (14), δ_{12} as. (10), v_{16} (5)
-	932 (0.6)	γ_1 (47), γ_2 (30), γ_4 <i>as</i> . (11), τ_2 <i>as</i> . (7)
956 (1)	963 (0.1)	γ_3 (55), γ_4 as. (19), γ_2 as. (13), τ_1 (8)
1018 (45)	1013 (36.0)	v_2 (45), v_1 (12), $\delta_7 as.$ (11), $\delta_{14} as.$ (10), $\delta_{11} as.$ (6)
1037 (4)	1035 (2.9)	v_7 (47), δ_4 (13), v_9 (12), v_4 (7), δ_1 (6)
1105 (9)	1103 (5.7)	δ_7 (19), v_2 (18), v_{11} (10), v_4 <i>as.</i> (9), δ_3 <i>as.</i> (8)
1146 (17)	1145 (8.7)	δ_4 (24), $\delta_3 as.$ (24), $\nu_2 as.$ (8), ν_9 (7), ν_{14} (6), ν_1 (6)
-	1168 (0.1)	δ_2 (43), v_4 (15), δ_3 <i>as</i> . (9), δ_1 (8)
1221 (31)	1221 (19.7)	v_{11} (19), δ_{10} (12), δ_4 as. (12), δ_1 (11), δ_{15} as. (9), v_{13} as. (8), v_1 (8),
		$\delta_5 as. (5)$
1257 (27)	1257 (14.1)	v_5 (28), v_{15} as. (22), δ_1 as. (15), v_{14} as. (8)

Supplementary Material for PCCP This journal is © The Owner Societies 2005

1294 (20)	1287 (14.2)	δ_{15} (27), v_{15} (14), v_{14} as. (10), δ_{11} (9), δ_{7} (9)
1323 (18)	1322 (6.2)	v_{13} (20), v_9 (14), v_{15} as. (12), δ_4 as. (9), v_4 (8), v_5 as. (6), δ_2 as. (6)
1353 (41),	1377 (36.3)	δ_{10} (22), δ_1 as. (11), δ_{11} as. (9), v_4 (9), v_9 (9), v_1 (7), δ_3 (6), v_7 as.
1350 (23)		(5)
1408 (100)	1406 (86.1)	δ_{11} (23), δ_{10} (19), v_{14} (15), v_1 <i>as</i> . (7)
1444 (33)	1451 (4.6)	δ_3 (15), δ_2 (14), ν_4 as. (10), ν_{16} (10), ν_{15} as. (10), ν_{11} (9), ν_{13} (7), δ_4
		(7)
1489 (22)	1488 (18.3)	δ_1 (16), δ_2 as. (16), δ_4 (13), v_7 as. (12), δ_{10} (10), v_5 (9)
1529 (18)	1527 (21.2)	δ_{11} (30), δ_{15} <i>as.</i> (29), $v_1(16)$
1590 sh ^d	1582 (6.1)	$v_9(21), v_7 as. (14), v_{13} as. (11), \delta_3(11), \delta_{10} as. (11), v_{16} as. (7), v_5$
		(6), $\delta_8 as.$ (5)
1604 (28)	1602 (30.1)	$v_{16}(28), v_4(17), v_{11}(8), v_{13} as. (8), v_7 as. (6)$
1650 (94)	1643 (59.9)	$v_{16}(24), v_{11} as. (11), v_5(9), v_9(7), \delta_9(6), v_4 as. (6), v_{14} as. (6)$
3066 sp ^e	3107 (0.1)	$v_6(39), v_{10}(35), v_8 as. (22)$
3078 sp	3113 (2.4)	$v_6(48), v_{10} as. (45), v_{12}(6)$
3115 sp	3131 (2.7)	v_8 (46), v_{12} as. (45), v_6 (8)
3115 sp	3137 (1.5)	v_{12} (45), v_8 (31), v_{10} (19)
3341 (39)	3376 (100.0)	v ₁₇ (100)
3463 (21),	3506 (15.6)	v ₁₈ (97)
3475 (11),	3552 (21.1)	v ₃ (97)

^{*a*} B3LYP/6-311++G(d,p) of the z,z,z,z conformer, frequencies scaled uniformly by 0.98, ^{*b*} Only contributions more than 5 % were considered, ^{*c*} *as.* – an asymmetric vibration, ^{*d*} *sh.* – shoulder, ^{*e*} *sp.* – superimposed bands; calculations of integral intensity not possible.

Table S4. Assignments of experimental spectrum recorded after photolysis of **sha** in an Ar matrix at 12 K. Harmonic frequencies (in cm⁻¹) and integral intensities (in km/mol) are calculated at B3LYP/6-311++G(d,p) level. Relative intensities are given in parenthesis. Assignment of bands is based on Potential Energy Distributions (PEDs) of normal modes (in percent), defined in Table 2 of supporting information.

v_{exp} (cm ⁻¹)	$v_{calc} (cm^{-1})^{a-c}$	Species	Assignment ^d
723 $(0.19)^e$	737 (0.19)	А	v C ₆ -N ₁ (22), $\delta_8 as.^f$ (15), v_{13} (14), v_1 (9), v_5 (9), δ C ₂ -C ₆ -N ₁ - δ C ₇ -C ₆ -N ₁ (8), λ C ₆ -N ₁ -C ₈ -O ₉ as. (6)
754 (0.47) ^{<i>e</i>}	743 (0.54)	А	γ_2 (36), γ_3 (26), γ_1 <i>as.</i> (20), γ_4 (11)
749 (0.16) ^{<i>e</i>}	757 (0.18)	В	γ_2 (38), γ_3 (21), γ_1 <i>as.</i> (21), γ_4 (12)
836 (0.14)	833 (0.08)	А	δ_7 (36), v_{15} as. (20), δ_9 as. (19), v_{11} as. (7)
997 (0.10)	1028 (0.05)	В	v_7 (47), v_9 (13), δ_4 (11), v_4 (9), δ_1 (7)
	1029 (0.12)	А	v_7 (40), v_9 (16), δ_4 (11), v_4 (10), δ_1 (8)
1082 (0.26)	1076 (0.16)	A	$ \begin{array}{c} \delta_7 \ (38), v_{11} \ (12), v \ C_6 \text{-} N_1 \ as. \ (10), \ \delta_1 \ as. \ (6), \ \delta_3 \ as. \\ (5), v_4 \ as. \ (5) \end{array} $
1151 (0.15)	1137 (0.12)	A	$ \begin{array}{c} \delta_4 \ (24), \ \delta_3 \ as. \ (15), \ v_4 \ as. \ (13), \ v \ C_6 \ N_1 \ (10), \ v_9 \ (8), \\ v_1 \ (5), \ \delta_2 \ as. \ (5) \end{array} $
	1137 (0.23)	В	v_{16} (41), δ_4 (14), v_5 <i>as</i> . (8), v_{11} <i>as</i> . (5), v_{14} (5)
1203 (1.00)	1199 (1.00)	А	δ_{10} (40), v_{11} (13), v_{13} <i>as</i> . (10), δ_4 <i>as</i> . (7), δ_1 (6)
$1210 (0.18)^e$	1224 (0.46)	В	$ \begin{array}{c} \delta_{10} (29), v_{14} (14), v_{13} as. (12), v_{1} (9), \delta_{7} as. (9) v_{4} as. \\ (7) \end{array} $
$1254 (0.06)^{e}$	1251 (0.15)	В	v_{15} (36), v_5 as. (22), δ_1 (9), δ_3 (5)
1260 (0.26) ^e	1252 (0.63)	A	v_{15} (32), v_5 as. (22), δ_1 (19), δ C ₂ -C ₆ -N ₁ - δ C ₇ -C ₆ -N ₁ (6), δ_7 (5)
1304 (0.55) ^e	1296 (0.33)	А	v_9 (16), v_{13} (15), δ_4 as. (15), v_{15} as. (12), v_5 as. (9), v_4 (7), δ_2 as. (7), v_7 as. (5)
1326 (0.15)	1326 (0.05)	В	$v_9 (14), \delta_4 as. (14), v_{13} (14), v_{15} as. (9), \delta_2 as. (9), v_4 as. (7)$
1344 (0.19)	1344 (0.20)	А	$ \begin{array}{c} \delta_{10} (23), \delta_3 (13), v_7 \ as. \ (11), v_4 \ (10), \delta_1 \ as. \ (10), v_5 \\ as. \ (9), v_{11} \ as. \ (7), v_9 \ (7), v_{13} \ (5) \end{array} $
1349 (0.03) ^e	1353 (0.09)	В	$ \begin{array}{c} \delta_{10} \ (27), \ \delta_1 \ as. \ (12), \ v_4 \ (11), \ \delta_3 \ (10), \ v_9 \ (9), \ v_7 \ as. \\ (8) \end{array} $
1428 (0.27)	1445 (0.12)	А	$\begin{array}{c} \nu_{16} (19), \nu_{1} (16), \delta_{2} (12), \delta_{1} as. (11), \nu C_{6}\text{-}N_{1} as. (9), \\ \delta_{4} as. (7), \delta_{10} as. (6), \nu_{7} (6) \end{array}$
1456 (0.08)	1468 (0.14)	А	$δ_3$ (19), $δ_2$ (17), v_4 <i>as.</i> (16), v_{11} (10), v_{15} <i>as.</i> (6), $δ$ C ₂ -C ₆ -N ₁ - $δ$ C ₇ -C ₆ -N ₁ (5)
1477 (0.12) ^e	1473 (0.12)	В	$ \begin{array}{c} \delta_2 \ (21), \ \delta_3 \ (14), \ v_4 \ as. \ (13), \ v_5 \ as. \ (9), \ v_{11} \ (8), \ v_{15} \ as. \\ (6) \end{array} $
1482 (0.29) ^e	1482 (0.28)	В	$ \begin{array}{c} \delta_1 (20), \delta_4 (19), \nu_{13} (12), \nu_7 as. (9), \delta_2 as. (8), \nu_{15} as. \\ (8) \end{array} $
1527 (0.89) ^e	1517 (0.83)	A	v C ₆ -N ₁ (21), v ₁₆ <i>as.</i> (11), δ_1 <i>as.</i> (10), δ_4 <i>as.</i> (9), v ₁ <i>as.</i> (8), v ₅ <i>as.</i> (7), v ₇ (5), v ₁₅ (5)

Supplementary Material for PCCP This journal is © The Owner Societies 2005

1598 (0.07) ^e	1582 (0.17)	В	v_7 (20), v_{13} (20), v_9 as. (15), δ_3 as. (10), δ_8 (9), v_5 as. (6)
1589 (1.30) ^e	1595 (0.40)	A	v_9 (20), v_{13} as. (18), v_7 as. (16), v_5 (12), δ_3 (8), δ_8 as. (7)
1617 (0.17) ^e	1624 (0.23)	В	v_4 (21), v_{11} (19), v_9 as. (12), v_5 as. (11), δ_9 as. (10), δ_1 as. (7), δ_4 (5)
1789 (0.98)	1750 (1.00)	В	v_1 (62), v_{14} as. (24), v_{16} (7)
$2258(17.49)^{e}$	2307 (12.10)	А	v_1 (49), v_{16} as. (49)
3214 (0.01)	3115 (0.05)	А	v_{10} (52), v_6 as. (38), v_{12} as. (9)
3228 (0.11)	3130 (0.07)	А	$v_8(51), v_{12} as. (37), v_6(10)$
3383 (2.61)	3691 (0.69)	А	v ₁₇ (100)
3425 (0.91)	3643 (0.41)	В	v ₁₇ (100)

^{*a*} B3LYP/6-311++G(d,p) of A and B, frequencies scaled uniformly by factor of 0.98, ^{*b*}

In A and B structure the intensities are relative to the 1199 and 1750 cm⁻¹ experimental band integral intensity, respectively, ^{*c*} The theoretical bands of relative intensity ≥ 0.05 were included, ^{*d*} Only contributions more than 5 % were considered, ^{*e*} Intensity is not reliable due to overlapped bands, ^{*f*} as. – an asymmetric vibration.