Conformer	Arrangement ^a	Energy difference ^b	Frequencies ^c
$1(C_{3v})$	3S, 0E	0.0	162.5, 2 × 166.9
$2(C_{\rm s})$	2 S , 1E	+7.1	162.9 <i>i</i> , 170.0, 173.6
$3(C_{\rm s})$	1 S , 2E	+14.7	179.0 <i>i</i> , 169.6 <i>i</i> , 175.2
$4(C_{3v})$	0S, 3E	+23.6	$197.7i, 2 \times 182.9i$

Table S1 Possible conformations with symmetry, energies (in kJ mol⁻¹) and three lowest-lying frequencies (cm⁻¹) for ITMS.

^{*a*} S = Staggered (H-C-Si-I = 180°), E = Eclipsed (H-C-Si-I = 0°).

^b Difference from the lowest energy conformer, calculated at the HF/3-21G* level.

^c All frequencies relate to motions of the methyl groups relative to the Si-I bond.

Number	Description	Definition
1-3	Si-C stretch	R ₁₋₃
4-12	C-H stretch	R ₄₋₁₂
13	Si-I stretch	R ₁₃
14-16	symmetric methyl deformation	$6^{\text{-}1/2}(\alpha_{1,4,7}\text{+}\alpha_{2,5,8}\text{+}\alpha_{3,6,9}\text{-}\beta_{1,4,7}\text{-}\beta_{2,5,8}\text{-}\beta_{3,6,9})$
17-19	asymmetric methyl deformation	$6^{-1/2}(2\alpha_{1,4,7}-\alpha_{2,5,8}-\alpha_{3,6,9})$
20-22	asymmetric methyl deformation	$2^{-1/2}(\alpha_{2,5,8}-\alpha_{3,6,9})$
23-25	methyl rock	$6^{-1/2}(2\beta_{1,4,7}\text{-}\beta_{2,5,8}\text{-}\beta_{3,6,9})$
26-28	methyl rock	$2^{-1/2}(\beta_{2,5,8}-\beta_{3,6,9})$
29	symmetric SiC ₃ deformation	$6^{-1/2}(\theta_1 + \theta_2 + \theta_3 - \phi_1 - \phi_2 - \phi_3)$
30	asymmetric SiC ₃ deformation	$6^{-1/2}(2\theta_1 - \theta_2 - \theta_{3,})$
31	asymmetric SiC ₃ deformation	$2^{-1/2}(\theta_2 - \theta_3)$
32	SiC ₃ rock	$6^{-1/2}(2\phi_1-\phi_2-\phi_3)$
33	SiC ₃ rock	$2^{-1/2}(\phi_2 - \phi_3)$
34-36	C-Si torsion	$9^{-1/2}(\tau_{1,10,19}+\tau_{2,11,20}+\tau_{3,12,21}+\tau_{4,13,22}+\tau_{5,14,23}$
		$+\tau_{6,15,24}+\tau_{7,16,25}+\tau_{8,17,26}+\tau_{9,18,27})$

 Table S2 Natural coordinates defined for iodotrimethylsilane.

α: H-C-H angle, β: H-C-Si angle, θ: C-Si-C angle, ϕ : C-Si-I angle

H-SiMe ₃			
Parameter ^c	HF/3-21G*	HF/6-31G*	MP2/6-31G*
С-На	108.8	108.7	109.5
С-Нβ	108.8	108.7	109.4
Si-C	188.7	189.1	188.6
Si-X	148.3	148.4	149.5
Si-C-Ha	111.2	111.3	110.9
Si-C-Hβ	111.2	111.4	111.4
C-Si-C	110.3	110.4	110.2
X-Si-C	108.6	108.6	108.8
Energy / Hartree	-406.2998	-408.3667	-408.8433
F-SiMe ₃			
Parameter	HF/3-21G*	HF/6-31G*	MP2/6-31G*
С-На	108.9	108.8	109.5
С-Нβ	108.8	108.7	109.4
Si-C	186.8	187.7	187.2
Si-X	160.5	161.0	163.6
Si-C-Ha	110.9	111.2	110.8
Si-C-Hβ	111.6	111.4	111.3
C-Si-C	110.9	111.4	111.2
X-Si-C	108.0	107.4	107.7
Energy / Hartree	-504.7284	-507.3023	-507.9508
Cl-SiMe ₃			
Parameter	HF/3-21G*	HF/6-31G*	MP2/6-31G*
С-На	108.9	108.8	109.5
С-Нβ	108.7	108.6	109.3
Si-C	187.3	187.9	187.4
Si-X	108.2	209.5	208.6
Si-C-Ha	110.6	110.5	110.5

Table S3 Geometric structures of SiMe₃X (X = H, F, Cl, Br or I) at the HF level using the 3-21G* and 6-31G* basis sets, and at the MP2 level using the 6-31G* basis set. For ITMS, the SDB-cc-pVTZ basis set and ECP was used for iodine with the higher-level calculations.^{*a,b*}

Si-C-Hβ	111.3	111.4	111.2
C-Si-C	111.5	111.5	111.4
X-Si-C	107.3	107.3	107.5
Energy / Hartree	-863.1956	-867.3338	-867.9373
Br-SiMe ₃			
Parameter	HF/3-21G*	HF/6-31G*	MP2/6-31G*
С-На	108.9	108.8	109.5
C-Ηβ	108.7	108.6	109.3
Si-C	187.3	187.8	187.3
Si-X	222.1	224.5	224.8
Si-C-Ha	110.3	110.3	110.2
Si-C-Hβ	111.4	111.4	111.2
C-Si-C	110.9	111.3	111.4
X-Si-C	108.1	107.6	107.5
X-Si-C Energy / Hartree	108.1 -2966.0659	107.6 -2977.7481	107.5 -2978.3360
X-Si-C Energy / Hartree I-SiMe ₃	108.1 -2966.0659	107.6 -2977.7481	107.5 -2978.3360
X-Si-C Energy / Hartree I-SiMe ₃ Parameter	108.1 -2966.0659 HF/3-21G*	107.6 -2977.7481 HF/GEN ^d	107.5 -2978.3360 MP2/GEN ^d
X-Si-C Energy / Hartree I-SiMe ₃ Parameter C-Hα	108.1 -2966.0659 HF/3-21G* 108.9	107.6 -2977.7481 HF/GEN ^d 108.8	107.5 -2978.3360 MP2/GEN^d 109.6
X-Si-C Energy / Hartree I-SiMe ₃ Parameter C-Hα C-Hβ	108.1 -2966.0659 HF/3-21G* 108.9 108.6	107.6 -2977.7481 HF/GEN ^d 108.8 108.5	107.5 -2978.3360 MP2/GEN ^d 109.6 109.4
X-Si-C Energy / Hartree I-SiMe ₃ Parameter C-Hα C-Hβ Si-C	108.1 -2966.0659 HF/3-21G* 108.9 108.6 1.876	107.6 -2977.7481 HF/GEN ^d 108.8 108.5 188.2	107.5 -2978.3360 MP2/GEN^d 109.6 109.4 187.7
X-Si-C Energy / Hartree I-SiMe ₃ Parameter C-Hα C-Hβ Si-C Si-X	108.1 -2966.0659 HF/3-21G* 108.9 108.6 1.876 2.501	107.6 -2977.7481 HF/GEN ^d 108.8 108.5 188.2 250.3	107.5 -2978.3360 MP2/GEN^d 109.6 109.4 187.7 248.7
X-Si-C Energy / Hartree I-SiMe ₃ Parameter C-Hα C-Hβ Si-C Si-X Si-C Si-X	108.1 -2966.0659 HF/3-21G* 108.9 108.6 1.876 2.501 110.1	107.6 -2977.7481 HF/GEN ^d 108.8 108.5 188.2 250.3 110.1	107.5 -2978.3360 MP2/GEN^d 109.6 109.4 187.7 248.7 110.1
X-Si-C Energy / Hartree I-SiMe ₃ Parameter C-Hα C-Hβ Si-C Si-X Si-C Si-X Si-C-Hα Si-C-Hβ	108.1 -2966.0659 HF/3-21G* 108.9 108.6 1.876 2.501 110.1 111.4	107.6 -2977.7481 HF/GEN ^d 108.8 108.5 188.2 250.3 110.1 111.5	107.5 -2978.3360 MP2/GEN^d 109.6 109.4 187.7 248.7 110.1 111.1
X-Si-CEnergy / HartreeI-SiMe_3ParameterC-H α C-H β Si-CSi-XSi-C-H α Si-C-H β C-H β C-H β	108.1 -2966.0659 HF/3-21G* 108.9 108.6 1.876 2.501 110.1 111.4 111.2	107.6 -2977.7481 HF/GEN^d 108.8 108.5 188.2 250.3 110.1 111.5 111.4	107.5 -2978.3360 MP2/GEN^d 109.6 109.4 187.7 248.7 110.1 111.1 111.5
X-Si-CEnergy / Hartree $I-SiMe_3$ ParameterC-H α C-H β Si-CSi-XSi-C-H α Si-C-H β C-Si-CX-Si-C	108.1 -2966.0659 HF/3-21G* 108.9 108.6 1.876 2.501 110.1 111.4 111.2 107.7	107.6 -2977.7481 HF/GEN ^d 108.8 108.5 188.2 250.3 110.1 111.5 111.4 107.5	107.5 -2978.3360 MP2/GEN^d 109.6 109.4 187.7 248.7 110.1 111.1 111.5 107.3

^{*a*} Distances in pm, angles in °

^b See Figure 1 (main text) for a general structural overview of the molecules.

^{*c*} α = unique methyl hydrogen atom; β = symmetry-equivalent hydrogen atoms.

^d 6-31G* on H, C and Si, SDB-cc-pVTZ on I

Number	Atom pair	r _a /pm	<i>u</i> _{h1} / pm	Restraint	<i>k</i> _{h1} / pm	$u_{\rm calc}$ / pm
1	C(3)-H(5)	108.9(3)	8.4(3)	7.5(7)	0.4	7.5
2	Si(1)-C(3)	187.3(1)	4.5(1)	-	0.1	5.1
3	Si(1)-I(2)	248.5(2)	4.5(3)	-	0.0	5.8
4	C(3)C(7)	310.2(2)	10.0(6)	-	-0.2	10.0
5	I(2)C(3)	350.9(2)	9.8(3)	-	-0.3	10.6
6	I(2)H(5)	361.6(10)	25.6(17)	24.2(24)	0.4	24.2
7	I(2)H(4)	448.0(7)	12.1(18)	-	-3.3	12.1
8	H(5)H(6)	175.6(5)	12.0(fixed)	-	-0.1	12.0
9	Si(1)H(4)	246.8(12)	11.8(fixed)	-	-0.3	11.8
10	Si(1)H(5)	247.7(7)	11.6(fixed)	-	-0.3	11.6
11	H(5)H(14)	306.1(13)	32.4(fixed)	-	-3.7	32.4
12	H(4)H(9)	317.3(28)	32.2(fixed)	-	-3.1	32.2
13	C(3)H(10)	329.4(6)	22.2(fixed)	-	0.4	22.2
14	C(3)H(9)	334.2(13)	22.1(fixed)	-	0.3	22.1
15	H(4)H(10)	359.7(10)	35.0(fixed)	-	-0.9	35.0
16	C(3)H(8)	402.0(5)	11.6(fixed)	-	-2.8	11.6
17	H(5)H(10)	425.5(11)	22.3(fixed)	-	-2.9	22.3
18	H(4)H(8)	431.3(13)	22.0(fixed)	-	-3.1	22.0
19	H(5)H(8)	484.5(12)	14.5(fixed)	-	-4.7	14.5

Table S4 Interatomic distances (r_a /pm) and amplitudes of vibration (u_{h1} /pm) for the GED structure of ITMS with those calculated at the HF/6-31G*//SDB-cc-pVTZ level (u_{calc}).^{*a.b*}

^{*a*} Estimated standard deviations, obtained in the least-squares refinement, are given in parentheses.

^b Amplitudes not refined were fixed at the values obtained using a force field obtained at the HF level with the 6-31G* basis set on H, C and Si, and the SDB-cc-pVTZ basis set on I.

Table S5 Least-squares correlation matrix	$rix (\times 100)$ for the GED refinement	of ITMS."
---	---	-----------

	k_2	
<i>u</i> ₂	58	
U z	63	

^{*a*} Only elements with absolute values $\geq 50\%$ are shown; k_2 is a scale factor.

Atom	x	У	Z
Si(1)	0.000	0.000	0.000
I(2)	2.486	0.000	0.000
C(3)	-0.536	1.794	0.000
H(4)	-1.626	1.868	0.000
H(5)	-0.164	2.317	0.883
H(6)	-0.164	2.317	-0.883
C(7)	-0.536	-0.897	-1.554
H(8)	-0.164	-1.923	-1.565
H(9)	-1.626	-0.934	-1.618
H(10)	-0.164	-0.394	-2.448
C (11)	-0.536	-0.897	1.554
H(12)	-1.626	-0.934	1.618
H(13)	-0.164	-1.923	1.565
H(14)	-0.164	-0.394	2.448

Table S6 Experimental GED coordinates (Å) from the refinement of the C_{3v} structure of ITMS.

Table S7 Values of the scale factors associated with the normal coordinates defined for ITMSusing the B3LYP method with three different basis sets.

		DFT / B3LYP	,
	6-311G**	LanL2DZdp	LanL2DZ
SiC stretch	1.051	1.033	1.049
SiI stretch	0.981	0.923	1.139
CH stretch	0.915	0.914	0.896
CH ₃ symmetric deformation	0.929	0.936	0.853
CH ₃ asymmetric deformation	0.925	0.929	0.897
CH ₃ rock	0.893	0.908	0.731
SiC ₃ symmetric deformation	1.230	1.230	1.410
SiC ₃ asymmetric deformation	1.108	1.083	1.131
SiC ₃ rock	1.112	1.170	1.254
SiC torsion	1.000	1.000	1.000

Figure S1 Experimental and final weighted difference (experimental – theoretical) molecularscattering intensities for ISiMe₃.

Figure S2 IR spectrum (liquid phase) (upper) compared with the calculated spectrum of the liquid using B3LYP/LanL2DZ and B3LYP/LanL2DZdp after scaling (lower), in the region from 3150 to 2850 cm⁻¹.

