Supplementary Material to

Dissociative Photoionization of Mono-, Di- and Trimethylamine Studied by a Combined Threshold Photoelectron Photoion Coincidence Spectroscopy and Computational Approach

Andras Bodi[‡], Bálint Sztáray[‡] and Tomas Baer^{*,§}

[‡]Department of General and Inorganic Chemistry, Eotvos Lorand University, Budapest, Hungary [§]Department of Chemistry, University of North Carolina, Chapel Hill, NC, ^{*}corresponding author

Table S1 Calculated frequencies, barriers, and rotational constants used in RRKM analysis

$NH_2(CH_3)$ frequencies / cm ⁻¹	316, 851, 980, 1056, 1170, 1352, 1461, 1497, 1519, 1669, 2949, 3052, 3088, 3488, 3562
NH ₂ (CH ₃) rotational constants / GHz	103.44, 22.69, 21.82
NH ₂ (CH ₃) internal rotation	$1 \text{ CH}_3 \text{ rotor}, V = 6 \text{ kJ/mol}^*, I = 3.12 \text{ amu} \text{ Å}^2$
$NH_2(CH_3)^+$ frequencies / cm ⁻¹	66, 709, 912, 995, 1068, 1233, 1332, 1407, 1476, 1634, 2829, 3062, 3143, 3441, 3548
NH ₂ (CH ₃) ⁺ rotational constants / GHz	106.11, 23.81, 22.08
$NH_2(CH_3)^+$ internal rotation	1 CH ₃ free rotor, $I = 3.22$ amu Å ²
$NH_2(CH_3)^+$ TS frequencies [‡] / cm ⁻¹	526, 556, 813, 932, 1085, 1201, 1324, 1422, 1572, 1738, 3108, 3228, 3466, 3578
$NH(CH_3)_2^+$ TS reverse barrier / kJ/mol ; critical freq. / cm ⁻¹	1.8, 1000
NH ₂ (CH ₃) ⁺ TS rotational constants / GHz	85.61, 24.50, 23.69
$NH(CH_3)_2$ frequencies / cm ⁻¹	250, 383, 780, 942, 1036, 1098, 1168, 1185, 1268, 1444, 1471, 1476, 1488, 1494, 1519, 1520, 2912, 2918, 3041, 3042, 3088, 3089, 3518
NH(CH ₃) ₂ rotational constants / GHz	34.70, 9.26, 8.18
NH(CH ₃) ₂ internal rotation	2 CH ₃ rotors, $V = 14.2$ kJ/mol, $I = 3.03$ amu Å ²
$NH(CH_3)_2^+$ frequencies / cm ⁻¹	250, 383, 780, 942, 1036, 1098, 1168, 1185, 1268, 1444, 1471, 1476, 1488, 1494, 1519, 1520, 2912, 2918, 3041, 3042, 3088, 3089, 3518
$NH(CH_3)_2^+$ rotational constants / GHz	40.48, 8.58, 7.76
$NH(CH_3)_2^+$ internal rotation	2 CH ₃ free rotors, $I = 3.09$ amu·Å ²
$NH(CH_3)_2^+$ TS frequencies / cm ⁻¹	160, 322, 459, 524, 706, 935, 1031, 1075, 1149, 1197, 1250, 1418, 1446, 1459, 1470, 1503, 1761, 3028, 3103, 3129, 3147, 3224, 3491
NH(CH ₃) ₂ ⁺ TS rotational constants / GHz	36.87, 8.91, 8.16
$NH(CH_3)_2^+$ TS reverse barrier / kJ/mol; critical freq. / cm ⁻¹	4.0, 1190
$NH(CH_3)_2^+$ TS internal rotation	1 CH ₃ rotor, $V = 5.8$ kJ/mol, $I = 3.11$ amu·Å ²
$N(CH_3)_3$ frequencies / cm ⁻¹	260, 350, 421, 422, 831, 1058, 1059, 1071, 1119, 1119, 1204, 1305, 1306, 1443, 1444, 1482, 1482, 1484, 1491, 1501, 1513, 1513, 2888,
	2890, 2906, 3049, 3049, 3054, 3089, 3094, 3094
N(CH ₃) ₃ rotational constants / GHz	8.68, 8.68, 4.91
N(CH ₃) ₃ internal rotation	$3 \text{ CH}_3 \text{ rotors}, V = 18.2 \text{ kJ/mol}, I = 3.13 \text{ amu} \text{Å}^2$
$N(CH_3)_3^+$ frequencies / cm ⁻¹	85, 334, 409, 411, 764, 1013, 1014, 1017, 1018, 1088, 1132, 1293, 1293, 1417, 1420, 1422, 1452, 1452, 1455, 1486, 1486, 1503, 3005,
	3005, 3016, 3062, 3064, 3064, 3165, 3168, 3168
N(CH ₃) ₃ ⁺ rotational constants / GHz	8.42, 8.42, 4.57
$N(CH_3)_3^+$ internal rotation	3 CH ₃ free rotors, $I = 3.22$ amu·Å ²
$N(CH_3)_3^+$ TS frequencies / cm ⁻¹	146, 316, 345, 402, 491, 549, 832, 868, 1012, 1075, 1123, 1165, 1174, 1186, 1328, 1429, 1445, 1448, 1452, 1469, 1474, 1502, 1763, 3022,
	3025, 3105, 3118, 3120, 3145, 3147, 3225
N(CH ₃) ₃ ⁺ TS rotational constants / GHz	8.73, 8.37, 4.76
$N(CH_3)_3^+$ TS reverse barrier / kJ/mol ; critical freq. / cm ⁻¹	7.4, 1200
$N(CH_3)_3^+$ TS internal rotation	2 CH ₃ rotors, $V = 6.9$ kJ/mol, $I = 3.19$ amu·Å ²

Frequencies corresponding to (degenerate) internal rotations are in italics. Optimized transition state (TS) frequencies are underlined. *The methylamine internal rotation barrier was decreased to better reproduce the shape of the thermal energy distribution based on the breakdown diagram. *Ab initio frequencies. Fit frequencies are discussed in the text.

Figure S2. Error analysis obtained by plotting the error in fitting data as a function of the assumed reaction enthalpy. Transition state frequencies were varied to obtain a best fit to the data. The steepness of the goodness of fit curve indicates how sensitive the fit is to the onset.

4