Matrix isolation and computational study of the photochemistry of *p*-azidoaniline

Elena A. Pritchina, Nina P. Gritsan, Thomas Bally

SUPPORTING INFORMATION, PART 2 (TABLES)

Table S1. Vertical excitation energies of triplet *p*-aminophenylnitrene calculated using CASPT2 method (symmetry C_s).^a

state	∆E _{casscf} , eV	Δ E _{caspt2} , eV	ref. weight	λ, nm	f	Major configurations
1 ³ A"	0.0	0.0	0.78			82% of ground configuration
1 ³ A'	3.05	2.89	0.76	429	1.3×10 ⁻³	41%: 9a" →19a' 31%: 19a' →11a"
2 ³ A"	3.27	2.95	0.77	420	1.5×10 ⁻²	49%: 18a' →19a' 28%: 19a' →20a'
2 ³ A'	5.45	3.68	0.73	337	4.6×10 ⁻²	32%: 9a"→19a' 33%: 19a'→11a"
3 ³ A'	3.89	3.96	0.76	313	2.6×10 ⁻¹⁰	79%: 18a' →10a"
4 ³ A'	4.36	4.15	0.76	298	1.4×10 ⁻²	81%: 16a' →10a"
3 ³ A"	4.62	4.45	0.77	279	3.5×10 ⁻³	63%: 9a" →11a"
4 ³ A"	6.52	4.60	0.74	269	3.2×10 ⁻¹	26%: 18a' →19a' 30%: 19a' →20a'
5 ³ A"	5.23	4.61	0.77	269	6.1×10 ⁻³	39%: 9a" →11a" 24%: 15a' →19a'
6 ³ A"	4.92	4.65	0.77	267	1.5×10 ⁻⁵	60%: 9a" →10a" 13%: 18a' →19a' + 9a" →10a"
7 ³ A"	5.26	4.84	0.76	256	1.7×10 ⁻³	77%: 16a' →19a'
5 ³ A'	5.69	5.65	0.76	219	1.4×10 ⁻⁵	67%: 19a' →10a" + 9a" →11a"

a based on a CASSCF(12,12)/ANO-S wavefunction at the CASSCF(8,8)/6-31G(d) geometry; A' states were calculated with a level shift of 0.10 h, A" states - with a level shift of 0.20 h.

CASPT2	-		-			
states	1 ¹ A"	2 ¹ A"	3 ¹ A"	4 ¹ A"	5 ¹ A"	6 ¹ A"
		leve	l shift = 0	.00 h		
E _{caspt2} , H	-340.604311	-340.504202	-340.441194	-340.436084	-340.769466	-340.433844
$\Delta { extsf{E}}_{ extsf{caspt2}}$, eV	0.000	2.724	4.439	4.578		4.639
Ref. Weight	t 0.749	0.446	0.619	0.347	0.001	0.741
		leve	1 shift = 0	.05 h		
E _{caspt2} , H	-340.603963	-340.497846	-340.445576	-340.450847	-340.437480	-340.433462
$\Delta { extsf{E}}_{ extsf{caspt2}}$, eV	0.000	2.888	4.309	4.167	4.530	4.640
Ref. Weight	t 0.757	0.735	0.701	0.509	0.728	0.750
		leve	1 shift = 0	.10 h		
E _{caspt2} , H	-340.602988	-340.495686	-340.440384	-340.472190	-340.434696	-340.432371
$\Delta { extsf{E}}_{ extsf{caspt2}}$, eV	0.000	2.920	4.425	3.559	4.580	4.643
Ref. Weight	t 0.764	0.752	0.753	0.586	0.750	0.758
		leve	1 shift = 0	.15 h		
E _{caspt2} , H	-340.601477	-340.494080	-340.440179	-340.437994	-340.432406	-340.430714
$\Delta { extsf{E}}_{ extsf{CASPT2}}$, eV	0.000	2.922	4.389	4.449	4.601	4.647
Ref. Weight	t 0.771	0.760	0.755	0.712	0.760	0.755
		leve	1 shift = 0	.20 h		
E _{caspt2} , H	-340.599503	-340.491066	-340.435909	-340.430405	-340.429910	-340.428572
$\Delta { extsf{E}}_{ extsf{CASPT2}}$, eV	0.000	2.951	4.452	4.601	4.615	4.651
Ref. Weight	t 0.778	0.771	0.770	0.736	0.769	0.773
CASPT2 states	7 ¹ A''	1 ¹ A'	2 ¹ A'	3 ¹ A'	4 ¹ A'	5 ¹ A'
		leve	l shift = 0	.00 h		
E _{caspt2} , H	-340.424738	-340.498338	-340.470241	-340.459211	-340.452022	-340.396714
$\Delta extsf{E}_{ extsf{CASPT2}}$, eV	4.885	2.884	3.648	3.948	4.144	5.649
Ref. Weight	t 0.568	0.437	0.659	0.654	0.737	0.743
		leve	1 shift = 0	.05 h		
E _{caspt2} , H	-340.492415	-340.498154	-340.493620	-340.458554	-340.451493	-340.396499
$\Delta extsf{E}_{ extsf{CASPT2}}$, eV	3.035	2.879	3.003	3.957	4.149	5.645
Ref. Weight	t 0.392	0.746	0.534	0.755	0.751	0.750
		leve	1 shift = 0	.10 h		
E _{caspt2} , H	-340.541135	-340.496880	-340.467712	-340.457530	-340.450325	-340.395271
$\Delta extsf{E}_{ extsf{CASPT2}}$, eV	1.683	2.887	3.681	3.958	4.154	5.652
Ref. Weight	t 0.393	0.757	0.728	0.763	0.760	0.760
		leve	1 shift = 0	.15 h		
E _{caspt2} , H	-340.425987	-340.495693	-340.464710	-340.455969	-340.448651	-340.393637
$\Delta { extsf{E}}_{ extsf{CASPT2}}$, eV	4.775	2.895	3.722	3.960	4.159	5.656
Ref. Weight	t 0.746	0.765	0.742	0.771	0.768	0.768
		leve	1 shift = 0	.20 h		
E_{CASPT2} , H	-340.421655	-340.492858	-340.461669	-340.453944	-340.446532	-340.391531
$\Delta \mathtt{E}_{\mathtt{CASPT2}}$, eV	4.840	2.902	3.751	3.961	4.163	5.659
Ref. Weight	t 0.761	0.773	0.751	0.778	0.775	0.775

Table S2. Dependence of energy and reference weight of CASPT2 states on the level shift for triplet p-aminophenylnitrene^a (C_s-symmetry).

^aThe results with level shift 0.20 h and 0.10 h for A" and A' states are listed in Table S1 of the supporting information, respectively.

CASPT2	1.3 7	0.3 7	237	4.3 7	E 3 m
states	$1^{\circ}A_2$	2°A2	3°A ₂	4°A ₂	5°A2
		level shi:	ft = 0.00 h		
E _{CASPT2} , H	-340.601508	-340.488557	-340.438401	-340.439107	-340.425794
$\Delta \mathtt{E}_{\mathtt{CASPT2}}$, eV	0.000	3.074	4.438	4.419	4.4781
Ref. Weight	0.749	0.468	0.499	0.722	0.160
		level shi:	Et = 0.05 h		
E _{caspt2} , H	-340.601158	-340.496922	-340.443155	-340.510687	-340.693264
$\Delta { extsf{E}}_{ extsf{CASPT2}}$, eV	0.000	2.836	4.300	2.462	
Ref. Weight	0.757	0.732	0.584	0.363	0.140
		level shi:	ft = 0.10 h		
E _{CASPT2} , H	-340.600179	-340.494251	-340.536053	-340.437865	-340.444394
$\Delta \mathtt{E}_{\mathtt{CASPT2}}$, eV	0.000	2.882	1.745	4.417	4.239
Ref. Weight	0.765	0.754	0.446	0.754	0.643
		level shi:	ft = 0.15 h		
E _{caspt2} , H	-340.598662	-340.492112	-340.444793	-340.435890	-340.424790
$\Delta \mathtt{E}_{\mathtt{CASPT2}}$, eV	0.000	2.899	4.187	4.429	4.731
Ref. Weight	0.772	0.764	0.704	0.763	0.743
		level shi:	ft = 0.20 h		
E _{caspt2} , H	-340.596683	-340.489715	-340.434337	-340.433508	-340.418413
$\Delta \mathtt{E}_{\mathtt{CASPT2}}$, eV	0.000	2.911	4.418	4.440	4.851
Ref. Weight	0.779	0.772	0.736	0.771	0.764
CASPT2 states	$1^{3}B_{1}$	2 ³ B ₁	3 ³ B ₁	4 ³ B ₁	$5^{3}B_{1}$
		level shi:	Et = 0.00 h		
E _{caspt2} , H	-340.498726	-340.467576	-340.448562	-340.418487	-340.401337
$\Delta { extsf{E}}_{ extsf{CASPT2}}$, eV	2.797	3.645	4.162	4.980	5.447
Ref. Weight	0.737	0.682	0.740	0.704	0.348
		level shi:	Et = 0.05 h		
E _{caspt2} , H	-340.498309	-340.466572	-340.448113	-340.419420	-340.410328
$\Delta { extsf{E}}_{ extsf{CASPT2}}$, eV	2.799	3.662	4.150	4.945	5.193
Ref. Weight	0.747	0.723	0.751	0.716	0.673
		level shi:	Et = 0.10 h		
E _{caspt2} , H	-340.497135	-340.465083	-340.447001	-340.418085	-340.403779
$\Delta { extsf{E}}_{ extsf{CASPT2}}$, eV	2.804	3.676	4.168	4.955	5.344
Ref. Weight	0.756	0.735	0.759	0.737	0.730
		level shi:	£t = 0.15 h		
E _{caspt2} , H	-340.495401	-340.462821	-340.445355	-340.416231	-340.399988
	0 010		4 1 5 0	4 0 6 2	F 40F
$\Delta E_{ ext{CASPT2}}$, eV	2.810	3.696	4.1/2	4.963	5.405

Table S3. Dependence of energy and reference weight of CASPT2 states on the level shift for triplet p-aminophenylnitrene^a (C_{2v}-symmetry).

 $^a The$ results with level shift 0.20 h and 0.10 h for A_2 and B_1 states are listed in Table 1 of the manuscript, respectively.

010(u))						
CASPT2 states	1 ¹ A′	2 ¹ A′	3 ¹ A′	4 ¹ A′	5 ¹ A'	6 ¹ A'
		leve	1 shift = 0.	.00 h		
E _{caspt2} , H	-490.619194	-490.511776	-490.480913	-490.475284	-490.443425	-490.432613
$\Delta { extsf{E}}_{ extsf{CASPT2}}$, eV	0.000	2.923	3.763	3.330	4.783	5.077
Ref. Weight	t 0.695	0.659	0.573	0.650	0.547	0.391
		leve	l shift = 0.	.05 h		
E _{caspt2} , H	-490.618753	-490.511002	-490.480231	-490.509758	-490.445726	-490.448055
ΔE_{CASPT2} , eV	0.000	2.932	3.769	2.966	4.708	4.645
Ref. Weight	t 0.704	0.673	0.689	0.439	0.665	0.565
		leve	1 shift = 0.	10 h		
E _{caspt2} , H	-490.617517	-490.509080	-490.478751	-490.480038	-490.443147	-490.442568
$\Delta E_{ ext{CASPT2}}$, eV	0.000	2.951	3.776	3.741	4.745	4.761
Ref. Weight	t 0.712	0.685	0.702	0.684	0.683	0.642
		leve	1 shift = 0.	15 h		
E _{caspt2} , H	-490.615598	-490.506314	-490.476100	-490.473761	-490.439299	-490.439840
$\Delta E_{ ext{CASPT2}}$, eV	0.000	2.974	3.796	3.860	4.797	4.783
Ref. Weight	t 0.720	0.696	0.713	0.710	0.698	0.665
		leve	1 shift = 0.	20 h		
E _{caspt2} , H	-490.613088	-490.502874	-490.473139	-490.470035	-490.435617	-490.430968
$\Delta E_{ ext{CASPT2}}$, eV	0.000	2.999	3.808	3.893	4.829	4.956
Ref. Weight	t 0.728	0.706	0.721	0.721	0.709	0.694
		leve	1 shift = 0.	25 h		
E _{CASPT2} , H	-490.610066	-490.498882	-490.469707	-490.466308	-490.431529	-490.422442
$\Delta { extsf{E}}_{ extsf{CASPT2}}$, eV	0.000	3.025	3.819	3.912	4.858	5.106
Ref. Weight	t 0.735	0.715	0.729	0.730	0.718	0.713

Table S4. Dependence of energy and reference weight of CASPT2 states on the level shift for *cis-p*-aminophenylnitroso oxide^a (geometry CASSCF(12,12)/6-31G(d))

^aThe results with level shift 0.20 h are listed in Table 2 of the manuscript.

state	ΔE_{cassef} , eV	Δ E _{caspt2} , eV	ref. weight	λ, nm	f	Major configurations
1A'	0.0	0.0	0.70			65% of ground state configuration
1 ¹ A"	1.41	2.58	0.72	481	2.0×10 ⁻⁵	82%: 30a' →7a"
2 ¹ A'	4.34	2.58	0.68	480	3.4×10 ⁻¹	<pre>13% of ground state</pre>
3 ¹ A'	3.62	3.56	0.70	349	2.0×10 ⁻²	15%: 6a"→8a" 13%: 2(6a") →2(7a") 10%: 4a"→7a"
4 ¹ A'	3.66	3.63	0.70	341	1.1×10 ⁻²	15%: 6a" →8a" 12%: 5a" →7a" 10%: 6a" →7a" + 5a" →7a"
5 ¹ A'	5.54	4.62	0.68	269	1.5×10 ⁻²	14%: 6a"→8a" 14%: 6a"→7a" + 5a"→8a" 13%: 5a"→7a"
6 ¹ A'	5.89	5.03	0.69	246	4.2×10 ⁻²	13%: 6a" →8a" 12%: 6a" →7a" + 5a" →8a" 11%: 5a" →7a"
2 ¹ A"	4.32	5.12	0.71	242	1.4×10 ⁻⁵	47%: 30a' →7a" + 6a" →7a" 34%: 30a' →9a"

Table S5. Vertical excitation energies of cis-p-aminophenylnitrosooxide calculated using CASPT2 method at the RB3LYP/6-31G(d) geometry.^a

a based on a CASSCF(16,14)/ANO-S wavefunction at the B3LYP/6-31G(d) geometry; A' and A" states were calculated with a level shift of 0.15 h.

Table S6. Dependence of energy and reference weight of CASPT2 states on the level shift for *cis-p*-aminophenylnitroso oxide^a (geometry B3lYP/6-31G(d))

CASPT2 states	1 ¹ A′	2 ¹ A'	3 ¹ A'	4 ¹ A'	5 ¹ A'	6 ¹ A'
		leve	l shift = 0.	00 h		
E _{caspt2} , H	-490.632642	-490.540052	-490.501941	-490.498361	-490.468144	-490.448990
$\Delta { extsf{E}}_{ extsf{caspt2}}$, eV	0.000	2.520	3.557	3.654	4.476	4.997
Ref. weight	0.677	0.637	0.633	0.650	0.560	0.597
		leve	l shift = 0.	05 h		
E _{caspt2} , H	-490.632136	-490.539147	-490.512715	-490.512495	-490.468479	-490.448921
$\Delta \mathtt{E}_{\mathtt{CASPT2}}$, eV	0.000	2.530	3.250	3.256	4.453	4.985
Ref. weight	0.687	0.653	0.606	0.590	0.625	0.651
		leve	1 shift = 0.	10 h		
E_{CASPT2} , H	-490.630727	-490.536894	-490.501473	-490.498434	-490.462349	-490.451518
$\Delta \mathtt{E}_{\mathtt{CASPT2}}$, eV	0.000	2.553	3.517	3.600	4.582	4.877
Ref. Weight	0.696	0.666	0.681	0.685	0.672	0.654
		leve	1 shift = 0.	15 h		
E_{CASPT2} , H	-490.628551	-490.533671	-490.497912	-490.495120	-490.458942	-490.443611
$\Delta \mathtt{E}_{\mathtt{CASPT2}}$, eV	0.000	2.582	3.555	3.631	4.615	5.033
Ref. Weight	0.704	0.678	0.695	0.698	0.684	0.685
		leve	1 shift = 0.	20 h		
E_{CASPT2} , H	-490.625720	-490.529694	-490.494218	-490.491671	-490.455005	-490.439456
$\Delta \mathtt{E}_{\mathtt{CASPT2}}$, eV	0.000	2.613	3.578	3.648	4.645	5.069
Ref. Weight	0.713	0.688	0.705	0.707	0.695	0.696
		leve	1 shift = 0.	25 h		
E_{CASPT2} , H	-490.622325	-490.525110	-490.490132	-490.487805	-490.450570	-490.435038
$\Delta \mathtt{E}_{\mathtt{CASPT2}}$, eV	0.000	2.645	3.597	3.661	4.674	5.096
Ref. weight	0.720	0.698	0.714	0.716	0.705	0.706

^aThe results with level shift 0.15 h are listed in Table S5.

Table S7. Dependence of energy and reference weight of CASPT2 states on the level shift for *trans-p*-aminophenylnitroso oxide^a (geometry CASSCF(12,12)/6-31G(d))

CASPT2 states		1 ¹ A′	2 ¹ A'	3 ¹ A′	4 ¹ A ′	5 ¹ A'	6 ¹ A'
			leve	l shift = 0.	.00 h		
E _{caspt2} , H	H	-490.624626	-490.524977	-490.498810	-490.489627	-490.439511	-490.438708
$\Delta { ext{E}}_{ ext{CASPT2}}$, e	eV	0.000	2.712	3.424	3.674	5.037	5.059
Ref. weig	nt	0.685	0.648	0.644	0.656	0.153	0.526
			leve	l shift = 0.	.05 h		
E _{caspt2} , H	H	-490.624139	-490.524175	-490.497694	-490.563936	-490.442497	-490.445863
$\Delta { ext{E}}_{ ext{CASPT2}}$, e	eV	0.000	2.720	3.441	1.638	4.943	4.851
Ref. weig	nt	0.694	0.662	0.677	0.365	0.626	0.624
			leve	l shift = 0.	.10 h		
E _{caspt2} , H	H	-490.622781	-490.522098	-490.495694	-490.492007	-490.471108	-490.447413
$\Delta { ext{E}}_{ ext{CASPT2}}$, e	eV	0.000	2.740	3.458	3.559	4.127	4.772
Ref. weig	nt	0.703	0.675	0.690	0.687	0.560	0.640
			leve	l shift = 0.	.15 h		
E _{caspt2} , H	H	-490.620685	-490.519071	-490.492988	-490.487884	-490.437407	-490.433960
$\Delta { extsf{E}}_{ extsf{CASPT2}}$, e	∋V	0.000	2.765	3.475	3.614	4.987	5.081
Ref. weig	nt	0.711	0.686	0.700	0.703	0.682	0.695
			leve	l shift = 0	.20 h		
E _{caspt2} , H	H	-490.617958	-490.515303	-490.489664	-490.484311	-490.431658	-490.430006
$\Delta { extsf{E}}_{ extsf{CASPT2}}$, e	eV	0.000	2.793	3.491	3.637	5.070	5.114
Ref. weig	nt	0.719	0.696	0.710	0.713	0.700	0.706
			leve	l shift = 0	.25 h		
E _{caspt2} , H	H	-490.614689	-490.510940	-490.485819	-490.480481	-490.426337	-490.425778
$\Delta ext{E}_{ ext{CASPT2}}$, ϵ	eV	0.000	2.823	3.507	3.652	5.125	5.141
Ref. weig	nt	0.727	0.706	0.719	0.722	0.712	0.715

^aThe results with level shift 0.15 h are listed in Table 3 of the manuscript.

state	$\Delta E_{CASSCF}, eV$	$\Delta E_{CASPT2}, eV$	ref. weight	λ nm	f	Major configurations
1A'	0.0	0.0	0.71			61% of ground state configuration 10%: 6a" →7a"
1 ¹ A"	1.89	2.40	0.69	516	1.2×10 ⁻⁵	83%: 30a' →7a"
2 ¹ A'	4.33	2.87	0.69	432	4.7×10 ⁻¹	<pre>17% of ground state configuration 49%: 6a" →7a"</pre>
3 ¹ A'	3.49	3.31	0.70	375	1.7×10 ⁻²	22%: 2(6a") →2(7a") 18%: 4a" →7a" 17%: 6a" →9a" 13%: 6a" →7a" + 4a" →7a"
4 ¹ A'	3.60	3.37	0.70	368	2.2×10 ⁻²	29%: 6a" →8a" 16%: 5a" →7a" 15%: 6a" →7a" + 5a" →7a"
5 ¹ A'	5.80	4.34	0.69	285	8.2×10 ⁻²	21%: 5a"→7a" 19%: 6a"→8a"
6 ¹ A'	5.49	4.90	0.69	253	8.2×10 ⁻³	24%: 6a" →7a" + 5a" →8a"

Table S8. Vertical excitation energies of trans-p-aminophenylnitroso oxide calculated using CASPT2 method at the RB3LYP/6-31G(d) geometry.^a

a based on a CASSCF(16,14)/ANO-S wavefunction at the B3LYP/6-31G(d) geometry; A' states were calculated with a level shift of 0.15 h, A" states were calculated with no level shift.

CASPT2 $1^1 A'$ 2¹A' 3¹A' $4^1 A'$ 5¹A' 6¹A' states level shift = 0.00 h E_{CASPT2}, H -490.630543 -490.526582 -490.505492 -490.507948 -490.473056 -490.464089 2.829 3.403 3.336 4.285 ΔE_{CASPT2} , eV 0.000 4.529 Ref. weight 0.684 0.653 0.620 0.662 0.641 0.078 level shift = 0.05 h E_{CASPT2}, H -490.630056-490.525837-490.515487-497.406897-492.374681-490.453606 2.836 3.118 4.801 ΔE_{CASPT2} , eV 0.000 Ref. weight 0.694 0.667 0.641 0.007 0.025 0.650 level shift = 0.10 h E_{CASPT2}, H -490.628700-490.523893-490.580320-490.505418-490.470132-490.469713 3.276 3.355 0.000 2.852 4.315 4.326 ΔE_{CASPT2} , eV Ref. weight 0.678 0.690 0.703 0.692 0.676 0.604 level shift = 0.15 h E_{CASPT2}, H -490.626605-490.521033-490.505028-490.502761-490.466952-490.446501 0.000 2.873 3.308 3.370 4.344 4.901 ΔE_{CASPT2} , eV Ref. weight 0.689 0.703 0.702689 0.688 0.693 0.711 level shift = 0.20 h E_{CASPT2}, H -490.623879-490.517445-490.501635-490.499522-490.463207-490.442268 3.384 $\Delta \mathtt{E}_{\mathtt{CASPT2}}$, eV 0.000 2.896 3.326 4.372 4.942 0.705 Ref. weight 0.719 0.699 0.713 0.711 0.698

level shift = 0.25 h

E _{caspt2} ,	Н	-490.620610	-490.513265	-490.497869	-490.495764	-490.458929	-490.437975
$\Delta { ext{E}}_{ ext{CASPT2}}$,	eV	0.000	2.921	3.340	3.397	4.400	4.970
Ref. wei	ght	0.727	0.708	0.721	0.720	0.707	0.715

^aThe results with level shift 0.15 h are listed in Table S8.

Table S9. Dependence of energy and reference weight of CASPT2 states on the level shift for *trans-p*-aminophenylnitroso oxide^a (geometry RB3LYP/6-31G(d))

	H(0 K), kcal/mol	H(298 K), kcal/mol	G(298 K), kcal/mol	ΔH(0 K), kcal/mol	ΔH(298 K), kcal/mol	ΔG(298 K), kcal/mol
$^{3}NH_{2}PhN + O_{2}$	-491.230477	-491.219401	-491.281987	0.0	0.0	0.0
<i>cis</i> -NH ₂ PhNOO, singlet	-491.262193	-491.252574	-491.295769	-19.9	-20.8	-8.6
<i>syn</i> -NH ₂ PhNOO, triplet	-491.235343	-491.225302	-491.270560	-3.1	-3.7	+7.2
<i>trans</i> -NH ₂ PhNOO, singlet	-491.260009	-491.250282	-491.293680	-18.5	-19.4	-7.3
anti-NH ₂ PhNOO, triplet	-491.235184	-491.225032	-491.270886	-3.0	-3.5	+7.0
NH ₂ PhNOO dioxaziridine	-491.244113	-491.234578	-491.277756	-8.6	-9.5	+2.7
NH ₂ PhNO ₂	-491.364963	-491.355637	-491.398421	-84.4	-85.5	-73.1
3 PhN + O ₂	-435.947759	-435.938169	-435.996933	0.0	0.0	0.0
cis-PhNOO, singlet	-435.977727	-435.969765	-436.009602	-18.8	-19.8	-7.9
syn-PhNOO, triplet	-435.949080	-435.940554	-435.982765	-0.8	-1.5	+8.9
trans-PhNOO, singlet	-435.977817	-435.969658	-436.009890	-18.9	-19.8	-8.1
anti-PhNOO, triplet	-435.949819	-435.941218	-435.983845	-1.3	-1.9	+8.2
PhNOO dioxaziridine	-435.963739	-435.955735	-435.995808	-10.0	-11.0	+0.7
PhNO ₂	-436.083418	-436.075597	-436.115455	-85.1	-86.2	-74.4

Table S10. Summary of CBS-QB3 calculations

	H(0 K), kcal/mol	$\Delta H(0 \text{ K}), \text{ kcal/mol}$
$^{3}NH_{2}PhN + O_{2}$	-491.188632	0.0
cis-NH ₂ PhNOO, singlet	-491.234750	-28.9
syn-NH ₂ PhNOO, triplet	-491.195054	-4.0
trans-NH ₂ PhNOO, singlet	-491.231816	-27.1
anti-NH ₂ PhNOO, triplet	-491.195029	-4.0
NH ₂ PhNOO dioxaziridine	-491.214032	-15.9
NH ₂ PhNO ₂	-491.334128	-91.3
3 PhN + O ₂	-435.909331	0.0
cis-PhNOO, singlet	-435.953061	-27.4
syn-PhNOO, triplet	-435.912864	-2.2
trans-PhNOO, singlet	-435.952217	-26.9
anti-PhNOO, triplet	-435.912008	-1.7
PhNOO dioxaziridine	-435.936772	-17.2
PhNO ₂	-436.055984	-92.0

Table S11. Summary of G2M(CC5, MP2) calculations

Table S12. Su	ummary of	B3LYP/6-311G(d,p)	calculations
---------------	-----------	-------------------	--------------

	H(0 K), kcal/mol	H(298 K), kcal/mol	G(298 K), kcal/mol	ΔH(0 K), kcal/mol	ΔH(298 K), kcal/mol	ΔG(298 K), kcal/mol
$^{3}NH_{2}PhN + O_{2}$	-492.008411	-491.997397	-492.059881	0.0	0.0	0.0
<i>cis</i> -NH ₂ PhNOO, singlet	-492.023609	-492.014069	-492.057111	-9.5	-10.5	+1.7
<i>syn</i> -NH ₂ PhNOO, triplet	-492.005848	-491.995879	-492.041002	+1.6	+1.0	+11.8
<i>trans</i> -NH ₂ PhNOO, singlet	-492.017436	-492.007781	-492.051045	-5.7	-6.5	+5.5
anti-NH ₂ PhNOO, triplet	-492.006226	-491.996145	-492.041863	+1.4	+0.8	+11.3
NH ₂ PhNOO dioxaziridine NH ₂ PhNO ₂	-491.994358	-491.984895	-492.027944	+8.8	+7.8	+20.0
	-492.123543	-492.114287	-492.156945	-72.2	-73.3	-60.9
3 PhN + O ₂	-436.647277	-436.637732	-436.696426	0.0	0.0	0.0
cis-PhNOO, singlet	-436.657222	-436.649317	-436.689056	-6.2	-7.3	+4.6
syn-PhNOO, triplet	-436.641064	-436.632596	-436.674701	+3.9	+3.2	+13.6
trans-PhNOO, singlet	-436.654088	-436.645979	-436.686133	-4.3	-5.2	+6.5
anti-PhNOO, triplet	-436.641794	-436.633246	-436.675799	+3.4	+2.8	+12.9
PhNOO dioxaziridine	-436.634596	-436.626649	-436.666622	+8.0	+7.0	+18.7
PhNO ₂	-436.761942	-436.754176	-436.793939	-72.0	-73.1	-61.2

state	∆E _{casscf} , eV	ΔE_{CASPT2} , eV	ref. weight	λ, nm	f	Major configurations	
1 ¹ A'	0.0	0.0	0.74			82% of ground state configuration	
2 ¹ A'	6.17	3.94	0.71	315	5.8×10 ⁻²	29%: 8a" →9a" 32%: 5a" →9a" 12%: 5a" →12a"	
3 ¹ A'	4.72	4.21	0.72	294	3.9×10 ⁻³	41%: 8a"→10a" 18%: 7a"→9a"	
4 ¹ A'	6.74	4.70	0.71	264	1.6×10 ⁻¹	38%: 8a"→9a" 18%: 5a"→9a"	
1 ¹ A"	8.55	5.11	0.70	243	1.2×10 ⁻²	84%: 28a' →9a"	
2 ¹ A"	7.20	5.56	0.72	223	9.0×10 ⁻³	80%: 8a" →29a'	

Table S13. Vertical excitation energies of *p*-aminophenyl dioxaziridine calculated using CASPT2 method.^a

a based on a CASSCF(12,12)/ANO-S wavefunction at the B3LYP/6-31G(d) geometry; all states were calculated with a level shift of 0.25 h.

CASPT2		11-1	01-1	21-1	a1- c	11-11	01	
states		1'A'	2'A'	3'A'	4 ¹ A'	1'A"	2'A"	
level shift = 0.00 h								
E _{caspt2} , H	H -490	.537678-49	90.405533-49	90.381358-49	90.290141-49	90.354769-49	0.334763	
$\Delta { ext{E}}_{ ext{caspt2}}$, e	eV O	.000	3.596	4.254	6.736	4.977	5.522	
Ref. weig	ht O	.697	0.031	0.498	0.081	0.640	0.674	
level shift = 0.05 h								
E _{caspt2} , H	H -490	.537253-49	90.400771-49	0.402785-49	90.396054-49	90.353806-49	0.334449	
$\Delta { ext{E}}_{ ext{caspt2}}$, e	eV O	.000	3.727	3.659	3.842	4.992	5.519	
Ref. weig	ht 0	.706	0.640	0.581	0.537	0.659	0.684	
level shift = 0.10 h								
E _{caspt2} , H	H -490	.536054-49	90.395558-49	90.387242-49	90.378363-49	90.351769-49	0.333671	
$\Delta { ext{E}}_{ ext{caspt2}}$, e	ev O	.000	3.823	4.049	4.291	5.015	5.507	
Ref. weig	ht 0	.714	0.674	0.674	0.638	0.671	0.692	
			level s	hift = 0.15	h			
E _{caspt2} , H	H -490	.534183-49	90.392068-49	90.382141-49	90.367590-49	90.348895-49	0.330725	
$\Delta { ext{E}}_{ ext{caspt2}}$, e	eV O	.000	3.867	4.137	4.533	5.042	5.536	
Ref. weig	ht 0	.722	0.687	0.703	0.677	0.682	0.704	
level shift = 0.20 h								
E _{caspt2} , H	H -490	.531725-49	90.388236-49	90.378142-49	90.361560-49	90.345302-49	0.327783	
$\Delta { ext{E}}_{ ext{caspt2}}$, e	eV O	.000	3.905	4.179	4.630	5.073	5.550	
Ref. weig	ht 0	.729	0.697	0.714	0.694	0.692	0.712	
level shift = 0.25 h								
E _{caspt2} , H	H -490	.528757-49	90.383927-49	90.374031-49	90.356055-49	0.341094-49	0.324314	
$\Delta { ext{E}}_{ ext{caspt2}}$, e	eV O	.000	3.941	4.210	4.699	5.107	5.563	
Ref. weig	ht O	.736	0.707	0.724	0.706	0.701	0.720	
level shift = 0.30 h								
E _{caspt2} , H	H -490	.525342-49	90.379169-49	90.369663-49	90.350569-49	90.336365-49	0.320368	
$\Delta { ext{E}}_{ ext{caspt2}}$, e	eV O	.000	3.978	4.236	4.756	5.142	5.578	
Ref. weig	ht 0	.743	0.716	0.732	0.716	0.709	0.728	

Table S14. Dependence of energy and reference weight of CASPT2 states on the level shift for $p\mbox{-}aminophenyl\ dioxaziridine^a$

^aThe results with level shift 0.25 h are listed in Table S13.

Matrix isolation and computational study of the photochemistry of *p***-azidoaniline**

Elena A. Pritchina, Nina P. Gritsan, Thomas Bally

Figure S1

The electronic absorption spectrum of *p*-aminophenylnitrene (**4**) in an Ar matrix at 12 K and comparison of the positions and relative oscillator strengths of the electronic transitions of nitrene **4** calculated for planar (symmetry C_{2V} - **red bars**, cf. Table 1) and non-planar (symmetry C_S - **blue bars**, cf. Table S1) geometry of *p*-aminophenylnitrene.

Figure S2

Active space used in the CASSCF/CASPT2 calculations of the electronic transitions of the triplet p-aminophenylnitrene (symmetry C_s, cf. Table S1).

Figure S3

Difference IR spectra produced by bleaching of the adducts of nitrene **4** with oxygen in an Ar matrix at 12 K to >515 nm for 30 s (spectrum 1). The traces 2 and 3 show the IR spectra of *trans*-(**8**) *p*-aminophenylnitroso oxides calculated by RB3LYP and UB3LYP, respectively, and scaled by 0.9614.

Figure S4

Relative 0 K enthalpies of the species involved in the formation and rearrangement of phenyl- and *p*-aminophenyl nitroso oxides calculated by the the multi-level scheme G2M(CC5MP2).

Method G2M(CC5, MP2):^{*a*}

$$\begin{split} & E_{G2M(CC5,\ MP2)} = CCSD(T)/6\text{-}311G(d,p) + \Delta E(+3d2p) + \Delta E(HLC,CC5) + ZPE \\ & \Delta E(+3d2p) = E[PMP2/6\text{-}311\text{+}G(3df,2p)] \text{-} E[PMP2/6\text{-}311G(d,p)] \\ & \Delta E(HLC,CC5) = [\text{-}5,30n_{\beta}-0,19n_{\alpha}]/1000 \end{split}$$

^aA.M. Mebel, K. Morokuma, M.C. Lin. J. Chem. Phys., 1995, 103, 7414.

Relative 0 K enthalpies of the species involved in the formation and rearrangement of phenyl- and p-aminophenyl nitroso oxides calculated by the B3LYP/6-311G(d,p) method.

Figure S6

Difference IR spectrum produced by bleaching of the adducts of nitrene 4 with oxygen in an Ar matrix at 12 K to >515 nm for 5 min (spectrum 1). The traces 2 show the IR spectra of cyclic p-aminophenylnitroso dioxaziridine calculated by B3LYP and scaled by 0.9614. The asterisks mark the positions of experimental IR peaks of p-nitroaniline (2) in an Ar matrix at 12 K.

Figure S7

Active space used in the CASSCF/CASPT2 calculations of the electronic transitions of the cyclic *p*-aminophenyl dioxaziridine (cf. Table S10).