Electronic Supplementary Information

Reverse Hydrogen Spillover in Supported Subnanosize Clusters of the Metals of Groups 8 to 11. A Computational Model Study

Georgi N. Vayssilov^a and Notker Rösch^b

^a Faculty of Chemistry, University of Sofia, Sofia 1126, Bulgaria; e-mail: gnv@chem.uni-sofia.bg

^b Department Chemie, Technische Universität München, 85747 Garching, Germany, e-mail: roesch@ch.tum.de

	Ns ^c	$R(M_a-M_a)^a$		$R(M_a-M_b)^b$	
Fe	20	230	230	251	251
Co	14	230	230	239	239
Ni	8	234	238	234	235
Cu	2	245	245	240	241
Ru	4	252	252	245	245
Rh	0	249	249	248	248
Pd	2	267	267	266	266
Ag	2	273	273	291	292
Os	8	243	243	249	249
Ir	0	251	251	252	252
Pt	0	259	259	263	263
Au	0	279		263	263

Table S4. Number of unpaired electrons Ns and interatomic distances (in pm) in the optimized structures of the gas phase metal clusters in C₃ symmetry.

^a Distance between metal atoms in one of the basic triangles.

^b Distance between metal atoms belonging to different basic triangles.

	M ₆ /Ze	o(3H)	M ₆ (31	M ₆ (3H)/Zeo			
_	O_M	O_{H}	O _M	\mathbf{O}_{H}			
Fe	-0.72	-0.63	-0.72	-0.72			
Co	-0.72	-0.63	-0.71	-0.71			
Ni	-0.70	-0.63	-0.71	-0.70			
Cu	-0.72	-0.63	-0.71	-0.72			
Ru	-0.59	-0.63	-0.66	-0.67			
Rh	-0.64	-0.54	-0.71	-0.71			
Pd	-0.60	-0.60	-0.65	-0.65			
Ag	-0.57 ^c	-0.60	-0.68	-0.67			
Os	-0.59 ^c	-0.62	-0.67	-0.67			
Ir	-0.51	-0.62	-0.63	-0.63			
Pt	-0.58	-0.62	-0.62	-0.63			
Au	-0.57 ^c	-0.60	-0.62	-0.68 ^c			

Table S5. Mulliken charges (in e) of the O centers^a of the six-ring in models^b of zeolitesupported bare metal clusters (M_6) and clusters with hydrogen impurities (M_6H_3)

^a O_M – oxygen centers of the zeolite fragment not participating in OH bonds, i.e. all centers of the models $M_6(3H)/Zeo$, O_M – oxygen centers of the zeolite fragment participating in OH bonds, in the models $M_6/Zeo(3H)$

^b See text and Fig. 1.

^c Oxygen centers of the zeolite fragment which do neither participate in the bridging OH groups nor are bound to the metal cluster.

Table S6. Estimated binding energy shifts^a of the 1s level of the oxygen centers^b of the zeolite fragment and their variations^c for zeolite-supported bare metal clusters (M_6) and clusters with hydrogen impurities (M_6H_3).

	M ₆ /Zeo(3H)				M ₆ (3H)/Zeo				Comparison
	O_M	O_{H}	$<\Delta E_0>$	$\Delta^2 E_O$	O_M	O_{H}	$<\Delta E_0>$	$\Delta^2 E_0$	$\Delta < \Delta E_0 >$
Fe	-0.08	-0.23	-0.16	1.63	-0.26	-2.10	-1.18	0.06	-1.02
Co	-0.07	-0.19	-0.13	1.66	-0.23	-2.08	-1.16	0.07	-1.03
Ni	-0.10	-0.18	-0.14	1.70	-0.18	-2.02	-1.10	0.06	-0.96
Cu	-0.23	0.00	-0.12	2.01	-0.61	-2.37	-1.49	0.02	-1.38
Ru	-0.31	-0.68	-0.50	1.41	0.02	-1.56	-0.77	0.20	-0.27
Rh	-0.72	-0.49	-0.61	2.01	-0.19	-2.00	-1.10	0.03	-0.49
Pd	-0.21	0.03	-0.09	2.02	-0.01	-1.77	-0.89	0.02	-0.80
Ag	-0.66 ^d	0.19	-0.24	2.63	-0.72	-2.51	-1.62	0.01	-1.38
Os	-0.38 ^d	-0.60	-0.49	1.56	0.77	-0.96	-0.10	0.05	0.39
Ir	0.39	0.24	-0.31	1.63	0.70	-1.05	-0.18	0.03	-0.49
Pt	0.47	0.36	-0.41	1.67	0.61	-1.18	-0.29	0.01	-0.70
Au	0.44 ^d	0.34	-0.05	2.56	-1.26	- 1.96 ^d	-1.61	1.08	-1.56

^a See text for the reference values used to estimate the core level shifts.

 b O_M – oxygen centers of the zeolite fragment not participating in OH bonds, i.e. all centers of the models M₆(3H)/Zeo, O_M – oxygen centers of the zeolite fragment participating in OH bonds, in the models M₆(3H)/Zeo

^c $<\Delta E_0 > -$ average of core level shifts over O_M and O_H atoms, $\Delta^2 E_0 -$ difference between ΔE_0 values of both oxygen centers ($\Delta^2 E_0 = 1.78$ eV for the isolated zeolite fragment), $\Delta <\Delta E_0 > -$ difference between the $<\Delta E_0 >$ values of bare adsorbed metal clusters and adsorbed clusters with hydrogen impurities (a negative value implies destabilization of the core levels due to the reaction).

^d Levels corresponding to the oxygen centers of the zeolite fragment which do neither participate in the bridging OH groups nor are bound to the metal cluster.