Electronic Supporting Information

Remarks on Catalytic Reduction of CO_2 , H^+ and H_2 by Monovalent Ni

Wojciech Grochala

- S1. Calculated molecular properties of compounds of Ni(I).
- S2. Calculated molecular properties of compounds of Ni(II).
- **S3.** Calculated molecular properties of compounds of Ni(III).
- S4. Calculated molecular properties of dihydrogen complexes.
- S5. Calculated molecular properties of hydroxy complexes of Ni(III).
- S6. Calculated molecular properties of OH⁻, H₂O, H₃O⁺, H₂ and CO₂.

S7. Transformations of various hydroxy- complexes of Ni(I) at different

deprotonation stages.

Our DFT computations (Gaussian 03 package) have been performed with the B3LYP correlation-exchange functional. We have used the Pople's basis set $(6-311++G^{**}$ for C, H, O and N, and $6-31G^{**}$ for Ni). All minima have been tested for harmonic frequencies, while yielding no imaginary values. Since the species containing Ni(II) can exhibit spin crossover phenomenon, we have considered both singlet and triplet states in our calculations. The reaction enthalpies (calculated at T=0 K) are not corrected for zero-point vibrational energies; these corrections are typically small (up to 0.05 eV) and usually promote reaction substrates due to large zero-point energies for the H–H oscillator.

Properties of cyclam complexes of Ni are dependent on the basicity/acidity of the environment. In order to mimic the varying pH, we have studied Ni-cyclam complexes bearing various charges. For example, Ni(I)[N₄14]¹⁺ serves as a model species in a relatively acidic environment. When a strong base, H⁻, is attached to it, or when one or two protons are dissociated from the amine nitrogens, much more basic species are formed: (Ni(I)(H⁻)[N₄14]⁰, Ni(I)[N₄14–H⁺]⁰, Ni(I)[N₄14–2H⁺]⁻¹). It turns out that they may have different redox chemistry than the parent species, Ni(I)[N₄14]¹⁺.

S1. Calculated molecular properties of compounds of Ni(I).

²{Ni(I)[N₄14]}⁺¹ **E** = -2122.70791 au $\mu_{dip} = 0.57 D$ R(Ni-N) = 2.054, 2.056, 2.094, 2.098 Å q(Ni) = -1.164 e q(N) = +0.133, +0.050, -0.004, -0.021 e E_{SOMO,α} = -0.276 au E_{SOMO-1,α} = -0.299 au, E_{SOMO-1,β} = -0.265 au E_{SOMO+1,α} = -0.131 au, E_{SOMO+1,β} = -0.130 au $\Delta_{min} = 0.011$ au

 ${}^{2}{Ni(I)(H^{-})[N_{4}14]}^{0}$

E = -2123.40992 au $\mu_{dip} = 5.80 \text{ D}$ R(Ni-N) = 2.125, 2.184, 2.204, 2.459 Å R(Ni-H) = 1.605 Å q(Ni) = -0.310 e $q(\text{H}_{\text{Ni}}) = -0.409 \text{ e}$ q(N) = -0.049, -0.111, -0.226, -0.247 e $E_{\text{SOMO},\alpha} = -0.100 \text{ au}$ $E_{\text{SOMO}-1,\alpha} = -0.133 \text{ au}, E_{\text{SOMO}-1,\beta} = -0.080 \text{ au}$ $E_{\text{SOMO}+1,\alpha} = -0.019 \text{ au}, E_{\text{SOMO}+1,\beta} = -0.018 \text{ au}$ $\Delta_{\text{min}} = 0.020 \text{ au}$

²{Ni(I)[N₄14–1H⁺]}⁰ E = -2122.22824 au $\mu_{dip} = 4.95 D$ R(Ni–N) = 1.922, 2.046, 2.054, 2.115 Å q(Ni) = -2.071 e q(N) = +0.197, +0.200, +0.216, +0.280 e E_{SOMO,α} = -0.111 au E_{SOMO-1,α} = -0.129 au, E_{SOMO-1,β} = -0.087 au E_{SOMO+1,α} = -0.024 au, E_{SOMO+1,β} = -0.023 au $\Delta_{min} = 0.018 au$

²{Ni(I)[N₄14–2H⁺]}⁻¹ E = -2121.64266 au $\mu_{dip} = 0.53 D$ R(Ni–N) = 1.943, 1.999, 2.129, 2.129 Å q(Ni) = -1.127 e q(N) = +0.091, +0.077, -0.042, -0.089 e E_{SOMO,α} = +0.026 au (positive!) E_{SOMO-1,α} = +0.016 au, E_{SOMO-1,β} = +0.042 au E_{SOMO+1,α} = +0.082 au, E_{SOMO+1,β} = +0.083 au $\Delta_{min} = 0.010 au$

S2. Calculated molecular properties of compounds of Ni(II).

¹{Ni(II)(H⁻)[N₄14]}⁺¹ E = -2123.28086 au $\mu_{dip} = 2.02 D$ R(Ni-N) = 1.944, 1.945, 2.046, 2.467 Å R(Ni-H) = 1.472 Å q(Ni) = -0.906 e q(H_{Ni}) = -0.092 e q(N) = +0.036, +0.011, -0.011, -0.134 e E_{HOMO} = -0.293 au E_{LUMO} = -0.147 au $\Delta_{HL} = 0.146$ au

³{Ni(II)(H⁻)[N₄14]}⁺¹ E = -2123.28739 au $\mu_{dip} = 2.50 \text{ D}$ R(Ni-N) = 2.119, 2.122, 2.133, 2.141 Å R(Ni-H) = 1.574 Å q(Ni) = -0.898 e q(H_{Ni}) = -0.152 e q(N) = +0.004, +0.025, +0.037, +0.040 e E_{SOMO,α} = -0.303 au E_{SOMO-1,α} = -0.341 au, E_{SOMO-1,β} = -0.353 au

$$\begin{split} E_{SOMO-1,\alpha} &= -0.341 \text{ au}, \ E_{SOMO-1,\beta} &= -0.353 \text{ au} \\ E_{SOMO+1,\alpha} &= -0.126 \text{ au}, \ E_{SOMO+1,\beta} &= -0.170 \text{ au} \\ \Delta_{min} &= 0.037 \text{ au} \end{split}$$

¹{Ni(II)[N₄14–H⁺]}⁺¹ E = -2122.10660 au $\mu_{dip} = 4.80 \text{ D}$

R(Ni-N) = 1.839, 1.935, 1.938, 1.997 Å q(Ni) = -0.836 e q(N) = +0.016, +0.008, -0.005, -0.149 e $E_{HOMO} = -0.298 \text{ au}$ $E_{LUMO} = -0.156 \text{ au}$ $\Delta_{HL} = 0.146 \text{ au}$

${}^{3}{\rm Ni(II)[N_{4}14-H^{+}]}^{+1}$ E = -2122.10229 au

$$\begin{split} \mu_{dip} &= 3.89 \text{ D} \\ R(\text{Ni}-\text{N}) &= 2.085, 2.098, 2.100, 1.831 \text{ Å} \\ q(\text{Ni}) &= -0.623 \text{ e} \\ q(\text{N}) &= -0.115, -0.085, -0.038, +0.051 \text{ e} \\ E_{\text{SOMO},\alpha} &= -0.318 \text{ au} \\ E_{\text{SOMO}-1,\alpha} &= -0.329 \text{ au}, E_{\text{SOMO}-1,\beta} &= -0.323 \text{ au} \\ E_{\text{SOMO}+1,\alpha} &= -0.142 \text{ au}, E_{\text{SOMO}+1,\beta} &= -0.192 \text{ au} \\ \Delta_{\text{min}} &= 0.005 \text{ au} \end{split}$$

 $^{1}\{Ni(II)(H^{-})_{2}[N_{4}14]\}^{0}$

$$\begin{split} \mathbf{E} &= -2124.00743 \text{ au} \\ \mu_{dip} &= 5.84 \text{ D} \\ R(\text{Ni}-\text{N}) &= 2.022, 2.044, (2.771, 3.655) \text{ Å} \\ R(\text{Ni}-\text{H}) &= 1.464, 1.473 \text{ Å} \\ q(\text{Ni}) &= +0.096 \text{ e} \\ q(\text{Ni}) &= -0.197, -0.204 \text{ e} \\ q(\text{N}) &= -0.009, -0.067, -0.286, -0.287 \text{ e} \\ E_{\text{HOMO}} &= -0.141 \text{ au} \\ E_{\text{LUMO}} &= -0.018 \text{ au} \\ \Delta_{\text{HL}} &= 0.123 \text{ au} \end{split}$$

³{Ni(II)(H⁻)₂[N₄14]}⁰ E = -2124.00328 au $\mu_{dip} = 6.16$ D R(Ni-N) = 2.152, 2.171, 2.262, 2.371 Å R(Ni-H) = 1.636, 1.674 Å q(Ni) = -0.456 e q(H_{Ni}) = -0.372, -0.391 e q(N) = +0.433, +0.267, +0.239, +0.221 e E_{SOMO,α} = -0.119 au E_{SOMO-1,α} = -0.161 au, E_{SOMO-1,β} = -0.187 au E_{SOMO+1,α} = -0.019 au, E_{SOMO+1,β} = -0.019 au

¹{Ni(II)(H⁻)[N₄14–2H⁺]}⁻¹ E = -2122.21485 au $\mu_{dip} = 2.23 D$ R(Ni–N) = 1.935, 1.961, 1.975, 2.199 Å R(Ni–H) = 1.539 Å q(Ni) = -0.675 e q(H_{Ni}) = -0.405 e q(N) = -0.009, -0.030, -0.062, -0.119 e E_{HOMO} = +0.020 au (<u>positive!</u>) E_{LUMO} = +0.081 au $\Delta_{HL} = 0.061$ au

³{Ni(II)(H⁻)[N₄14–2H⁺]}⁻¹ E = -2122.24583 au μ_{dip} = 2.75 D R(Ni–N) = 1.985, 2.057, 2.187, 2.214 Å R(Ni–H) = 1.650 Å q(Ni) = -0.437 e q(H_{Ni}) = -0.633 e q(N) = +0.025, +0.015, +0.002, -0.005 e E_{SOMO,α} = -0.006 au E_{SOMO-1,α} = -0.007 au, E_{SOMO-1,β} = -0.002 au E_{SOMO+1,α} = +0.081 au, E_{SOMO+1,β} = +0.081 au Δ_{min} = 0.001 au

¹{Ni(II)[N₄14–2H⁺]}⁰ E = -2121.66280 au $\mu_{dip} = 1.00 D$ R(Ni–N) = 1.888, 1.890, 1.920, 1.926 Å q(Ni) = -0.911 e q(N) = +0.038, +0.038, -0.069, -0.072 e E_{SOMO,α} = -0.138 au E_{SOMO-1,α} = -0.175 au E_{SOMO+1,α} = -0.012 au $\Delta_{min} = 0.037$ au

³{Ni(II)(H⁻)[N₄14–1H⁺]}⁰ E = -2122.84551 au $\mu_{dip} = 4.39$ D R(Ni–N) = 1.921, 2.191, 2.200, 2.167 Å R(Ni–H) = 1.625 Å q(Ni) = -0.876 e q(H_{Ni}) = -0.375 e q(N) = +0.038, +0.057, +0.067, +0.115 e E_{SOMO,α} = -0.137 au E_{SOMO-1,α} = -0.168 au, E_{SOMO-1,β} = -0.160 au E_{SOMO+1,α} = -0.018 au, E_{SOMO+1,β} = -0.018 au $\Delta_{min} = 0.033$ au

S3. Calculated molecular properties of compounds of Ni(III). ${}^{2}{Ni(III)(H^{-})_{2}[N_{4}14]}^{+1}, {}^{2}{Ni(III)(H^{-})_{3}[N_{4}14]}^{0}$ not computed

- ²{Ni(III)(H⁻)₂[N₄14–2H⁺]}⁻¹ E = -2122.82121 au $\mu_{dip} = 0.40$ D R(Ni–N) = 1.996, 1.997, 2.222, 2.222 Å R(Ni–H) = 1.498, 1.498 Å q(Ni) = -1.582 e q(H_{Ni}) = -0.033, -0.037 e q(N) = +0.075, +0.074, +0.238, +0.240 e E_{SOMO,α} = -0.004 au E_{SOMO-1,α} = -0.005 au, E_{SOMO-1,β} = -0.000 au E_{SOMO+1,α} = +0.083 au, E_{SOMO+1,β} = -0.082 au $\Delta_{min} = 0.001$ au
- ²{Ni(III)(H⁻)[N₄14–2H⁺]}⁰ E = -2122.20874 au $\mu_{dip} = 2.13 \text{ D}$ R(Ni–N) = 1.881, 1.992, 2.002, 2.035 Å R(Ni–H) = 1.481 Å q(Ni) = -1.370 e q(H_{Ni}) = -0.088 e q(N) = +0.005, +0.086, +0.089, +0.135 e E_{SOMO,α} = -0.150 au E_{SOMO-1,α} = -0.177 au, E_{SOMO-1,β} = -0.154 au E_{SOMO+1,α} = -0.051 au, E_{SOMO+1,β} = -0.044 au $\Delta_{min} = 0.004$ au

S4. Calculated molecular properties of dihydrogen complexes.

²{Ni(I)(H₂)N₄14]}⁺¹ E = -2123.88893 au $\mu_{dip} = 0.35 D$ R(Ni-N) = 2.137, 2.159, 2.160, 2.160 Å R(Ni-H) = 1.645, 1.646 Å R(H-H) = 0.841 Å q(Ni) = -0.336 e q(H_{Ni}) = +0.003, -0.020 e q(N) = -0.035, -0.120, -0.169, -0.323 e E_{SOMO,α} = -0.308 au E_{SOMO-1,α} = -

0.319 au, $E_{SOMO-1,\beta}$ = -0.292 au $E_{SOMO+1,\alpha}$ = -0.125 au, $E_{SOMO+1,\beta}$ = -0.124 au Δ_{min} = 0.011 au

²{Ni(I)(H₂)(H⁻)[N₄14]}⁰ E = -2124.59224 au $\mu_{dip} = 4.52$ D R(Ni–N) = 2.134, 2.144 Å R(Ni–H) = 1.595, 1.616, 1.642 Å R(H–H) = 0.849 Å q(Ni) = -0.116 e q(H_{Ni}) = -0.070, -0.337 e q(N) = +0.007, -0.138, -0.231, -0.357 e E_{SOMO,α} = -0.146 au

 $E_{SOMO-1,\alpha} = -0.181$ au,

 $E_{SOMO-1,\beta}=-0.154$ au $E_{SOMO+1,\alpha}=-0.017 \text{ au}, E_{SOMO+1,\beta}=-0.017 \text{ au}$ $\Delta_{min}=0.008$ au

$^{2}\{Ni(I)(H_{2})[N_{4}14\text{--}2H^{+}]\}^{-1}$

$$\begin{split} \mathbf{E} &= -2122.82541 \text{ au} \\ \mu_{dip} &= 2.73 \text{ D} \\ R(\text{Ni-N}) &= 1.940, 2.019, 2.170, (3.239) \text{ Å} \\ R(\text{Ni-H}) &= 1.567, 1.572 \text{ Å} \\ R(\text{H-H}) &= 0.899 \text{ Å} \\ q(\text{Ni}) &= -0.446 \text{ e} \\ q(\text{H}_{\text{Ni}}) &= -0.093, -0.137 \text{ e} \\ q(\text{N}) &= +0.010, +0.008, -0.021, -0.174 \text{ e} \\ E_{\text{SOMO},\alpha} &= +0.002 \text{ au} \end{split}$$

 $E_{SOMO-1,\alpha} = -0.012$ au, $E_{SOMO-1,\beta} = +0.001$ au $E_{SOMO+1,\alpha} = +0.080$ au, $E_{SOMO+1,\beta} = +0.080$ au $\Delta_{min} = 0.001$ au

²{Ni(I)(H₂)[N₄14–2H⁺]}⁻¹, high-energy isomer E = -2122.81966 au $\mu_{dip} = 0.74$ D R(Ni–N) = 2.033, 2.058, 2.210, 2.247 Å R(Ni–H) = 1.607, 1.629 Å R(H–H) = 0.898 Å q(Ni) = -0.322 e q(H_{Ni}) = -0.096, -0.178 e q(N) = -0.020, -0.113, -0.126, -0.150 e E_{SOMO,α} = +0.006 au

 $E_{SOMO-1,\alpha}=+0.002$ au, $E_{SOMO-1,\beta}=+0.021$ au $E_{SOMO+1,\alpha}=+0.082$ au, $E_{SOMO+1,\beta}=+0.082$ au $\Delta_{min}=0.004$ au

S5. Calculated molecular properties of hydroxy complexes of Ni(III).

²{Ni(III)(OH⁻)[N₄14]}²⁺ E = -2198.21580 au $\mu_{dip} = 2.65$ D R(Ni–N) = 1.954, 1.958, 1.995, 2.080 Å R(Ni–O) = 1.806 Å R(O–H) = 0.965 Å q(Ni) = -1.675 e q(O) = -0.194 e q(N) = +0.019, +0.071, +0.074, +0.206 e E_{SOMO,α} = -0.531 au E_{SOMO-1,α} = -0.551 au, E_{SOMO-1,β} = -0.542 au

 $E_{SOMO+1,\alpha} = -0.399$ au, $E_{SOMO+1,\beta} = -0.392$ au

 $\Delta_{min} = 0.011$ au

²{Ni(III)(OH⁻)[N₄14–H⁺]}¹⁺ E = -2197.92938 au $\mu_{dip} = 5.04$ D R(Ni–N) = 1.835, 1.999, 2.009, 2.086 Å R(Ni–O) = 1.845 Å R(O–H) = 0.963 Å q(Ni) = -1.548 e q(O) = -0.324 e q(N) = +0.023, +0.055, +0.096, +0.285 e E_{SOMO,α} = -0.331 au E_{SOMO-1,α} = -0.366 au,

 $E_{SOMO-1,\beta}=-0.329$ au $E_{SOMO+1,\alpha}=-0.213 \text{ au}, E_{SOMO+1,\beta}=-0.224 \text{ au}$ $\Delta_{min}=0.002 \text{ au}$

2 {Ni(III)(OH⁻)[N₄14–2H⁺]}⁰ E = -2197.47857 au μ_{dip} = 6.54 D

$$\begin{split} & R(\text{Ni-N}) = 1.912, \, 1.918, \, 2.016, \, 2.093 \text{ Å} \\ & R(\text{Ni-O}) = 1.865 \text{ Å} \\ & R(\text{O-H}) = 0.964 \text{ Å} \\ & q(\text{Ni}) = -1.187 \text{ e} \\ & q(\text{O}) = -0.300 \text{ e} \\ & q(\text{N}) = -0.054, \, +0.056, \, +0.065, \, +0.215 \text{ e} \\ & E_{\text{SOMO},\alpha} = -0.170 \text{ au} \\ & E_{\text{SOMO-1},\alpha} = -0.186 \text{ au}, \, E_{\text{SOMO-1},\beta} = -0.169 \text{ au} \end{split}$$

$\Delta_{\min} = 0.001 \text{ au}$

S6. Calculated molecular properties of OH⁻, H₂O, H₃O⁺, H₂ and CO₂.

¹ (OH ⁻)	¹ (H ₂ O)	¹ (H ₃ O ⁺)
E = -75.82745 au	E = -76.45853 au	E = -76.73124 au
$\mu_{dip} = 1.74 \text{ D}$	$\mu_{dip} = 2.16 \text{ D}$	$\mu_{dip} = 1.43 \ D$
R(O–H) = 0.966 Å	R(O-H) = 0.962 Å	R(O–H) = 0.980 Å
q(O) = -1.114 e	q(O) = -0.502 e	q(O) = -0.201e
$E_{HOMO} = +0.047$ au	$E_{HOMO} = -0.323$ au	$E_{HOMO} = -0.745$ au
$E_{LUMO} = +0.169$ au	$E_{LUMO} = -0.023$ au	$E_{LUMO} = -0.284$ au
$\Delta_{\rm HL} = 0.122$ au	$\Delta_{\rm HL} = 0.300$ au	$\Delta_{\rm HL} = 0.461$ au

$^{1}\mathrm{H}_{2}$	¹ CO ₂
E = –1.17957 au	E = -188.64691 au
R(H-H) = 0.744 Å	R(C–O) = 1.161 Å
$E_{HOMO} = -0.434$ au	$E_{HOMO} = -0.356 \text{ au}$
$E_{LUMO} = +0.020$ au	$E_{LUMO} = -0.020$ au
$\Delta_{\rm HL} = 0.454$ au	$\Delta_{\rm HL} = 0.336$ au

S7. Transformations of various hydroxy- complexes of Ni(I) at different

deprotonation stages.

Schematic representation of H_2 elimination reactions involving tetraazamacrocyclic complexes of Ni(I) at various pH. Calculated enthalpies of reactions are shown.

Due to large differences between acidity and basicity of species considered here, the process described by Eq.(7a) in the paper is calculated to be extremely sensitive to pH. For example, the calculated enthalpies of reactions:

$2Ni(I)[N_414]^+ + H_3O^+ \rightarrow 2 Ni(III)(OH^-)[N_414]^{2+} + H_2,$	(Eq.Ss)
$2\text{Ni}(\text{I})[\text{N}_{4}14]^{+} + \text{H}_{2}\text{O} \rightarrow 2 \text{ Ni}(\text{III})(\text{OH}^{-})[\text{N}_{4}14 - \text{H}^{+}]^{+} + \text{H}_{2},$	(Eq.Sb)
$2Ni(I)[N_414]^+ + OH^- \rightarrow 2 Ni(III)(OH^-)[N_414 - 2H^+]^0 + H_2,$	(Eq.Sc)

range in an extremely broad span, from +1.19 eV via +1.56 eV to -3.34 eV, respectively.

Ni(I)-catalyzed process of H_2 evolution is calculated to be thermodynamically viable for complexes at various deprotonation stages of the amino hydrogens; among these, reaction intermediate between (Sc) and between the process:

 $2Ni(I)[N_414-H^+]^0 + H_2O \rightarrow 2Ni(III)(OH^-)[N_414-2H^+]^0 + H_2, \quad (Eq.Sd)$

seems to be the most rational choice (while analyzing graph above recollect that simultaneous presence of deprotonated complex and hydronium cations is unlikely in the same reaction medium). Such 'intermediate process' might be realized for a hydrated complex deprotonated at one amine N, which shows the $(OH_2...N^-)$ hydrogen bond interaction.

Studies of involvement of aquacomplexes in these reaction (for example:

 $2\{Ni(I)[N_414]\}^+ + 2 H_3O^+ \rightarrow 2\{Ni(III)(OH_2)_2[N_414]\}^+ + H_2, \qquad (Eq.Se)$

and those taking into account the trans/cis isomerism of cyclam complexes are also natural extensions of present work, and they are under scrutiny in our laboratory.