
APPENDIX
Corrected version of the ESI

A Computation of flux toward a sphere (3D)
In this appendix we give an approximate expression to compute the flux of M across a sphere.
As starting point, we consider the expression of the flux:
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which can be simplified in 1D as:

JM = −ωMDM

∆x
(f1,M − f2,M) (A-2)

In 1D and in general, for an interface following the grid discretization, i.e. when the points of the
grid are located at the interface, the computation of the flux is simply done by using expression
(A-1), and no errors arise from the boundary discretization. On the other hand, for instance
by considering a spherical electrode and a Cartesian computational grid some problems related
to the interface discretization arise. For this problem we have to deal with discretization points
which cannot be located exactly at the electrode surface. Indeed, practically all the points lie
either outside or inside the electrode. Therefore, the first thing to do is to choose an accurate
way to discriminate which points are closer to the electrode and consider these points as surface
points. One way is to select as electrode surface points, those points belonging to the electrode
and at least surrounded by one solution point. Clearly, the more refined is the grid, the more
precise the surface is reproduced. A cube is associated to each point. There are three kinds of
cubes:

• cube type A: outside the electrode, within the solution.

• cube type B: located at the electrode surface.

• cube type C: inside the electrode.

The flux at the electrode surface must be computed at the cubes of type B. The procedure
consists in counting the total net mass arriving in each cube B and divide by the number of
cubes B, i.e.:
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where the index i labels the cubes B and α = x, y, z runs on the three Cartesian directions.
We have introduced the primitive flux along each Cartesian direction, Jα,i,M which denotes the
flux of M along the α-direction at the cubes i, which can be computed by using the expression
(A-2), where the fi,M have to be properly chosen. The total number of moles crossing the
electrode surface is:

nM = JMnf∆x2t =

nf∑
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3∑
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Jα,i,M∆x2t (A-4)

Now, if we divide the total net number of moles of M crossing the electrode surface with the
real measure of the surface A =

πr2
0

2
(for the 8th part of the sphere) and the time of integration

t, we get:
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(A-5)

Expression (A-5) is the expression we use to compute the flux of M across the sphere.
Another way to compute the flux is to simply consider total net flux of particle leaving from
and entering into a site. This quantity can be approximated, in 1D, by:

JM ∼ (f ′2,M − f1,M)
∆x

∆t
(A-6)

where f ′2,M = f2,M + ωM(f eq
2,M − f2,). (The prime index represents the particle leaving from a

site and without prime the particle entering into a site.) If we consider the usual value of the
equilibrium function and make some algebra we get:

JM ∼ −(2− ωM)∆x

2∆t
(f1,M − f2,M) (A-7)

If we compare the expression (A-7) with the above expression (A-2), we can see that they are
exactly the same!

Using the same considerations as above, we extend the validity of expression (A-7) in a 3D
geometry, simply by counting the total net number of particles in a cube of type B, and divide
by the time interval and the spherical electrode surface:

JM ∼
∑

α Jα∆x2
α

A
(A-8)

where A is the spherical electrode surface and Jα is the flux along a given α-direction computed
by using (A-7).
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B An exact solution for a 3D spherical electrode in the
Laplace domain

In this appendix we report the analytical flux solution at the electrode surface computed with
the Laplace transform method for the problem stated in the article, adapted to the spherical
geometry (see [1]), with the corresponding initial and boundary conditions, for the case DL =
DML and in excess of ligand case. It is based on the Laplace inversion of the following function:

F (s) =
1

s

(
√

s + a)(
√
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Kc∗L(
√

s + a) + (
√
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(B-1)

where a =
√

DM
r0

, B = kd + kac
∗
L. Because the following equality holds:

√
DM

c∗M,tot

∂cM
∂r

= L−1[F (s)] (B-2)

the flux of M at the electrode surface is:

JM(t) = c∗M,tot

√
DML−1[F (s)] (B-3)

C A detailed description of the GR1 procedure
To be self-contained, we rewrite the interface condition between two adjacent sub-grids (please,
see the article for a complete explanation of the symbols):

(
1 −1

−∆xj −∆xj+1

) (
f

(j+1)
1,X

f
(j)
2,X

)
= bj (C-1)

The iterative process in the time domain [t1, t2] is defined as follows, (See [2] for the details
about the numerical computations of the boundary conditions):

1. Compute the values of f
(k)
i,X in the largest subgrid Gk at t2 = t1 + ∆tk, by using the

LBGK equation, with the appropriate boundary conditions at x → ∞ and on Γk−1,k.
The boundary condition on Γk−1,k is numerically solved by eqn (C-1).

2. Compute the values of f
(j)
i,X in the subgrid Gj at t2 = t1 +gj∆tj, by using the LBGK equa-

tion, with the appropriate boundary conditions on Γj,j+1 and on Γj−1,j both numerically
solved by eqn (C-1), by iterating on j from k − 1 to 2. In fact, the boundary conditions
at each time step, are the coupling conditions between the subgrids.
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3. Compute the values of f
(1)
i,X in the grid G1 at t2 = t1+g1∆t1, by using the LBGK equation,

with the appropriate boundary conditions on x = 0 and on Γ1,2, the latter numerically
solved by eqn (C-1).

The GR1 scheme can be understood in more detail with the help of figure C-1. Let us focus on
the point xs, the border between G1 and G2. The purpose at each time step is to compute the
density distribution functions f

(2)
1,X(xs, t + ∆t2) and f

(1)
2,X(xs, t + ∆t2). The procedure outlined in

the picture corresponds to a grid refinement factor g = 2. At time t every distribution function
and concentration is known at each point. For clarity the procedure is split into three steps:

1. At the subgrid G2 the lattice scheme is applied with a time step ∆t2. By applying the
LBGK scheme, all functions f

(2)
1,X at the inner points of G2 are computed at t + ∆t2.

The values of f
(2)
1,X(xs, t + ∆t2) cannot be computed by using the above mentioned LBGK

scheme, because the point xs − ∆x2 is outside the grid G2. Therefore f
(2)
1,X(xs, t + ∆t2)

is an unknown boundary condition for the evolution of f
(2)
1,X in the subgrid G2. Its value

will be computed by applying the system (C-1) once all entries of bj will be completely
known.

2. At the subgrid G1 the lattice scheme is applied with a time step ∆t1. For the same
considerations given above, all functions are computed at t + ∆t1, except for f

(1)
2,X(xs, t +

∆t1), which is an unknown boundary condition for the evolution of f
(1)
2,X in the subgrid

G1 because the point xs + ∆x1 is outside the grid G1.

3. At the subgrid G1 the lattice scheme is applied again, with a time step ∆t1. All functions
are computed at t + ∆t2, except for f

(1)
2,X(xs − ∆x1, t + ∆t2) and f

(1)
2,X(xs, t + ∆t2). The

first function f
(1)
2,X(xs −∆x1, t + ∆t2) is computed by applying the LBGK lattice scheme

that requires to know the value of f
(1)
2,X(xs, t + ∆t1). To know it we perform a time

interpolation of f
(2)
2,X(xs, t) and f

(2)
2,X(xs, t +∆t2), e.g. at the first order: f

(1)
2,X(xs, t+ ∆t1) =

f
(2)
2,X(xs,t)+f

(2)
2,X(xs,t+∆t2)

2
. From the geometric point of view, this interpolation is a weighted

average of the function f
(2)
2,X(xs, [t, t+∆t2]). Finally, f

(1)
2,X(xs, t+∆t2) and f

(2)
1,X(xs, t+∆t2)

are computed by applying the system of equations (C-1), where now all entries are known.
The procedure is then repeated starting from the new time level t + ∆t2.

D A detailed description of the GR2 procedure
The complete numerical scheme in the time domain [t1, t2] is:
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1. Compute the values of f
(k)
i,X in the coarser subgrid Gk at t2 = t1 +∆tk, by using the LBGK

equation, with bulk boundary conditions at x → ∞ and the boundary conditions of the
problem at the electrode surface.

2. Interpolate the boundary concentration values on Γk−1,k: c
(k−1)
X = I(c

(k−1)
X ), where I

is the interpolation function, in order to supply the boundary conditions for the new
computation in the finer subgrid Gk−1. For 1D problem the function I is the identity
while for 3D problem it is a more complicated function which computes a spatial average
of the concentration values.

3. Compute the values of f
(j)
i,X , (the first time for j = k − 1) in the finer subgrid Gj at

t2 = t1 + gj∆tj, by using the LBGK equation gj times. The boundary conditions at each
time step t1 + s∆tj for s = 1, . . . , gj in Γj,j+1 are computed by the following formula [2]:

f
(j)
i,X(x, t1 + s∆tj) = c

(j)
X (x, t1 + s∆tj)−

∑

k 6=i

f
(j)
k,X(x, t1 + s∆tj) (D-1)

where c
(j)
X (x, t1 + s∆tj) is computed by interpolation from point (2). Equation (D-1) is

exact at any order, therefore the accuracy depends only on the interpolation functions
used.

4. Repeat point (3) by decreasing j by one unit, until j = 1.
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Figure C-1: The GR1 scheme for a planar electrode (1D). The arrows represent the evolution
of the corresponding density distribution functions in the subgrid G1 along a time step ∆t1
and in the subgrid G2 along a time step ∆t2. The horizontal lines are the time level t, t + ∆t1
and t + ∆t2. The unknown density distribution functions, needed for boundary conditions, are
marked with a bolder line. For the subgrid G2 the unknown is f

(2)
1,X(xs, t+∆t2). For the subgrid

G1 the unknowns are: f
(1)
2,X(xs, t + ∆t1), f

(1)
2,X(xs − ∆x1, t + ∆t2), f

(1)
2,X(xs, t + ∆t1). From time

interpolation of f
(2)
2,X(xs, t) and f

(2)
2,X(xs, t+∆t2) we can compute f

(1)
2,X(xs, t+∆t1). Then, we can

compute f
(1)
2,X(xs − ∆x1, t + ∆t2) by applying the lattice scheme and, finally, f

(1)
2,X(xs, t + ∆t2)

and f
(2)
1,X(xs, t + ∆t2) are computed by applying the system of equations (C-1).
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