Prepared for submission to PhysChemChemPhys Sept. 16, 2006

Electronic supplementary information for

Theoretical and Spectroscopic Study of the Reaction of Diethylhydroxylamine on Si(100)-2×1

Gino A. DiLabio,^{*1} Stanislav A. Dogel², Amsalu Anagaw,^{1,2} Jason L. Pitters,¹ and Robert A. Wolkow^{1,2}

¹ National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2M9

> ² Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2G7.

^{*}National Institute for Nanotechnology, 11412 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2M9 . E-mail: Gino.DiLabio@nrc.ca; Tel: +1-780-641-1729.

Figure S1. Experimental HREEL spectrum for dissociatively adsorbed DEHA on Si(100)-2×1. Calculated IR (red) and Raman (blue) spectra for the $(C_2H_5)_2N + OH$ dissociation of DEHA (Fig. 1, **E**).

Figure S2. Experimental HREEL spectrum for dissociatively adsorbed DEHA on Si(100)-2×1. Calculated IR (red) and Raman (blue) spectra for the (C_2H_5)NOH + C_2H_5 dissociation of DEHA (Fig. 1, **F**).

The calculated low-energy O-H stretch at 3462 cm⁻¹ is due to the fact that the O-H BDE is quite low.³³ The absence of the unusual frequency is the HREEL spectra also contributed to us discounting **F** as the dissociation product,