Supporting Information

for

Sequential multiphoton absorption enhancement induced by zinc complexation in functionalized distyrylbenzene analogs

Graziano Fabbrini, Raffaele Riccò, Enzo Menna, Michele Maggini,* Vincenzo Amendola, Mattia Garbin, Massimo Villano, Moreno Meneghetti

Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
*To whom correspondence should be addressed
Phone: +39-0498275662 /Fax: +39-0498275792
Email address: michele.maggini@unipd.it

Contents

1. Synthetic details and characterization for compounds $\mathbf{4 , 5 , 7 , 9 - 1 4}$ (NMR and IR spectra for 2 and 3)
2. Titration for stoichiometry and binding constant determination

Figure S1 $\quad{ }^{1} \mathrm{H}$ NMR of 2
Figure S2 $\quad{ }^{13} \mathrm{C}$ NMR of 2
Figure S3 $\quad{ }^{1} \mathrm{H}$ NMR of 3
Figure S4 $\quad{ }^{13} \mathrm{C}$ NMR of 3
Figure S5 IR spectrum of 2
Figure S6 IR spectrum of 3
Figure S7 ESI-MS of 2
Figure S8 ESI-MS of 3
Figure S9 ESI-MS of $\mathbf{2 - Z \mathbf { n } ^ { 2 + }}$ complex
Figure S10 ESI-MS of $\mathbf{3 - Z \mathbf { Z n } ^ { 2 + }}$ complex
Figure S11 Fluorescence spectral changes observed upon the addition of Zn^{2+} to $\mathbf{2}$ and $\mathbf{3}$ (stoichiometry and binding constant determination)

> 4, $X=-C N$,
> 5, $\mathrm{X}=-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$
> 7
> 12
> 13
> 14

Phosphonate 4. Bromobenzyl derivative $10(147 \mathrm{mg}, 0.24 \mathrm{mmol})$ and triethylphosphite (213 mg , 1.28 mmol) were brought to $150{ }^{\circ} \mathrm{C}$ for 3 h . The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: ethyl acetate/petroleum ether 1:1, then ethyl acetate/ethanol 9:1).
$139 \mathrm{mg}(87 \%)$ of $\mathbf{1 0}$ were isolated as a yellow-green oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.56$ $(\mathrm{m}, 4 \mathrm{H}), 7.59-7.52\left(\mathrm{~d}, 1 \mathrm{H}, J_{\text {trans }}=16.5 \mathrm{~Hz}\right), 7.31-7.7 .06\left(\mathrm{~d}, 1 \mathrm{H}, J_{\text {trans }}=16.5 \mathrm{~Hz}\right), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.98$ $(\mathrm{s}, 1 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 4 \mathrm{H}), 4.11-4.3 .99(\mathrm{~m}, 4 \mathrm{H}), 3.90 .3 .85(\mathrm{~m}, 4 \mathrm{H}), 3.80-3.62(\mathrm{~m}, 12 \mathrm{H}), 3.57-3.50$ $(\mathrm{m}, 4 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.22(\mathrm{~d}, 2 \mathrm{H}, J=21.5 \mathrm{~Hz}), 1.29-1.23(\mathrm{t}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.22-151.10\left(\mathrm{~d}, J_{\mathrm{CP}}=7.4 \mathrm{~Hz}\right), 150.97,143.76,142.57,132.54$, 127.36-127.33 (d, $\left.J_{\mathrm{CP}}=1.8 \mathrm{~Hz}\right), 127.33-126.96\left(\mathrm{~d}, J_{\mathrm{CP}}=6.9 \mathrm{~Hz}\right), 125.36-125.29\left(\mathrm{~d}, J_{\mathrm{CP}}=4.1\right.$ $\mathrm{Hz}), 122.75-122.59\left(\mathrm{~d}, J_{\mathrm{CP}}=9.7 \mathrm{~Hz}\right), 119.25,116.54-116.45\left(\mathrm{~d}, J_{\mathrm{CP}}=5.5 \mathrm{~Hz}\right), 110.90-110.84$ $\left(\mathrm{d}, J_{\mathrm{CP}}=3.2 \mathrm{~Hz}\right), 110.31,72.03-72.01\left(\mathrm{~d}, J_{\mathrm{CP}}=1.3 \mathrm{~Hz}\right), 70.92,70.90,70.78,70.68,69.99,69.88$, $69.09,62.16-62.06\left(\mathrm{~d}, J_{\mathrm{CP}}=6.4 \mathrm{~Hz}\right), 59.12,27.90-25.69\left(\mathrm{~d}, J_{\mathrm{CP}}=138.0 \mathrm{~Hz}\right), 16.58-16.49\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ 6.0 Hz); IR (KBr) v $2870(v \mathrm{C}-\mathrm{H}), 2222(v \mathrm{C} \equiv \mathrm{N}), 1409$ ($v \mathrm{C}=\mathrm{C}-\mathrm{H}$), 1243 ($v \mathrm{O}-\mathrm{P}=\mathrm{O}$), 1199 ($v \mathrm{P}-\mathrm{O}-$ C), $1058\left(v_{\mathrm{s}} \mathrm{C}-\mathrm{O}-\mathrm{C}\right) \mathrm{cm}^{-1}$; ESI-MS: $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{NO}_{11} \mathrm{P}(\mathrm{m} / \mathrm{z}): 680[\mathrm{M}+\mathrm{H}]^{+}$.

Phosphonate 5. To a solution of bis-phosphonate $14(430 \mathrm{mg}, 0.61 \mathrm{mmol})$ and $4-(\mathrm{N}, \mathrm{N}-$ dimethylamino) benzaldehyde ($91 \mathrm{mg}, 0.61 \mathrm{mmol}$) in 15 ml of dry DMF at $0{ }^{\circ} \mathrm{C}$, a suspension of $t \mathrm{BuOK}(68 \mathrm{mg}, 0.61 \mathrm{mmol}$) in 5 ml of dry DMF was added dropwise over a period of 15 min under a nitrogen atmosphere. When the addition was complete, the mixture was stirred at room temperature for 12 h . The mixture was diluted with water $(30 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30$ ml). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: ethyl acetate/toluene/ethanol 6:4:1). 100 mg (24\%) of 5 were isolated as an orange oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.08-7.03\left(\mathrm{~d}, 1 \mathrm{H}, J_{\text {trans }}=16.6 \mathrm{~Hz}\right), 6.84-6.77$ $\left(\mathrm{d}, 1 \mathrm{H}, J_{\mathrm{trans}}=16.6 \mathrm{~Hz}\right), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.68-6.64(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.10-3.93(\mathrm{~m}$, $8 \mathrm{H}), 3.82-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.55(\mathrm{~m}, 12 \mathrm{H}), 3.43-3.40(\mathrm{~m}, 4 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.21-$ $3.12(\mathrm{~d}, 2 \mathrm{H}, J=21.7 \mathrm{~Hz}), 2.91(\mathrm{~s}, 6 \mathrm{H}), 1.20-1.15(\mathrm{t}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(62.9 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 150.92,150.04,149.98,129.82,128.89,127.49,116.41-116.32\left(\mathrm{~d}, J_{\mathrm{CP}}=5.3 \mathrm{~Hz}\right), 115.90-$ $115.82\left(\mathrm{~d}, J_{\mathrm{CP}}=5.3 \mathrm{~Hz}\right), 114.16-114.11\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 112.56,111.94,109.87-109.82\left(\mathrm{~d}, J_{\mathrm{CP}}=3 \mathrm{~Hz}\right)$, $71.82-71.80\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 70.78,70.70,70.57,70.50,70.43,70.42 .69 .84,69.77,69.63,69.11$, $68.77,61.91,61.80,40.52,27.52-25.31\left(\mathrm{~d}, J_{\mathrm{CP}}=138 \mathrm{~Hz}\right), 16.36-16.27\left(\mathrm{~d}, J_{\mathrm{CP}}=5.6 \mathrm{~Hz}\right) ; \operatorname{IR}(\mathrm{KBr}) v$ $\left(\mathrm{cm}^{-1}\right): 2923(v \mathrm{C}-\mathrm{H}), 1415(v \mathrm{C}=\mathrm{C}-\mathrm{H}), 1351(v \mathrm{C}-\mathrm{N}), 1249(v \mathrm{O}-\mathrm{P}=\mathrm{O}), 1207\left(v\right.$ P-O-C), $1053\left(v_{\mathrm{s}}\right.$ C-O-C), $959(\delta \mathrm{C}=\mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1}$; ESI-MS $\mathrm{C}_{35} \mathrm{H}_{56} \mathrm{NO}_{11} \mathrm{P}(\mathrm{m} / \mathrm{z})=720[\mathrm{M}+\mathrm{Na}]^{+}$.

Aldehyde-alcohol 7. To a solution of bis-alcohol $\mathbf{1 2}(5.00 \mathrm{~g}, 10.8 \mathrm{mmol})$ in 500 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 0 ${ }^{\circ} \mathrm{C}$, a suspension of DDQ ($2.45 \mathrm{~g}, 10.8 \mathrm{mmol}$) in 300 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise over a period of 2 h . When the addition was complete, the mixture was stirred at room temperature for 12
h. The mixture was filtered and the filtrate was concentrated under reduced pressure and the residue purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: ethyl acetate/ethanol 9:1). 4.47 g (90%) of 7 were isolated as a yellow oil. Elemental analysis calculated for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{10}$: $\mathrm{C}=57.38, \mathrm{H}=7.88$; found: $\mathrm{C}=57.37, \mathrm{H}=7.85 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.43(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H})$, $4.69(\mathrm{~s}, 2 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 4 \mathrm{H}), 3.89-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.71-3.61(\mathrm{~m}, 12 \mathrm{H}), 3.56-3.52(\mathrm{~m}, 4 \mathrm{H}), 3.37(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.35,156.53,150.54,139.63,124.22,113.73,110.05$, $71.93,70.90,70.70,70.62,70.58,70.54,69.71,69.51,68.98,68.52,61.13,59.04,59.01$; IR (KBr) 3447 ($v \mathrm{O}-\mathrm{H}), 2874(v \mathrm{C}-\mathrm{H}), 1676(v \mathrm{C}=\mathrm{O}), 1206(\delta \mathrm{C}-\mathrm{H}, \delta \mathrm{O}-\mathrm{H}), 1057(v \mathrm{C}-\mathrm{O}-\mathrm{C}) \mathrm{cm}^{-1}$.

Stylbene 9. To a solution of 4-cyanobenzyl-diethylphosphonate $\mathbf{8 (2 7 5 \mathrm { mg } , 1 . 0 8 \mathrm { mmol }) \text { in } 2 0 \mathrm { ml } \text { of }}$ dry THF at $0{ }^{\circ} \mathrm{C}, \mathrm{NaH}(105 \mathrm{mg}, 2.62 \mathrm{mmol})$ was added under a nitrogen atmosphere, and the resulting solution was stirred for 15 min . Then, a solution of tris(pyridyl)amino aldehyde-alcohol 7 ($500 \mathrm{mg}, 1.08 \mathrm{mmol}$) in 10 ml of dry THF was added and the mixture was stirred at room temperature for 3 h . The solvent was removed under reduced pressure and the crude product purified by flash column chromatography (SiO_{2}, eluent: toluene/ethyl acetate/ethanol 4:5:1). 449 $\mathrm{mg}(74 \%)$ of 9 were isolated as a yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.52\left(\mathrm{~d}, 1 \mathrm{H}, J_{\text {trans }}=\right.$ $16.2 \mathrm{~Hz}), 7.59-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.04\left(\mathrm{~d}, 1 \mathrm{H}, J_{\text {trans }}=16.2 \mathrm{~Hz}\right), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}$, $2 \mathrm{H}), 4.17-4.14(\mathrm{t}, 4 \mathrm{H}, J=8.7 \mathrm{~Hz}), 3.86-3.82(\mathrm{t}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.72-3.61(\mathrm{~m}, 12 \mathrm{H}), 3.52-3.50(\mathrm{~m}$, $4 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.98,150.59,142.25,132.37$, 132.10, 126.94, 126.57, 126.44, 124.91, 118.82, 113.80, 110.37, 109.80, 71.62, 70.47, 70.41, 70.31, 70.24, 70.21, 69.59, 69.44, 68.84, 68.49, 60.57, 58.60; IR (KBr) 3456 (v O-H), 2875 (v C-H), $2222(v \mathrm{C} \equiv \mathrm{N}), 1418(v \mathrm{C}=\mathrm{C}-\mathrm{H}), 1199(\delta \mathrm{O}-\mathrm{H}), 1060\left(v_{\mathrm{s}} \mathrm{C}-\mathrm{O}-\mathrm{C}\right), 967(\delta \mathrm{C}=\mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1}$; ESI-MS: $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{NO}_{9}(\mathrm{~m} / \mathrm{z})=582[\mathrm{M}+\mathrm{Na}]^{+}$.

Bromobenzyl stylbene 10. To a solution of trans-stylbene 9 ($420 \mathrm{mg}, 0.75 \mathrm{mmol}$) in 20 ml of dry THF at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere, a solution of $\mathrm{PBr}_{3}(244 \mathrm{mg}, 0.90 \mathrm{mmol})$ in 10 ml of dry THF was added dropwise over a period of 10 min . The resulting solution was stirred for 1 h at $0^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the crude product purified by flash column chromatography (SiO_{2}, eluent: ethyl acetate). $390 \mathrm{mg}(84 \%)$ of $\mathbf{1 0}$ were isolated as a yellow-green oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.51\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{trans}}=16.7 \mathrm{~Hz}\right), 7.14-7.08$ $\left(\mathrm{d}, 1 \mathrm{H}, J_{\text {trans }}=16.7 \mathrm{~Hz}\right), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 4 \mathrm{H}), 3.93-3.87(\mathrm{~m}, 4 \mathrm{H})$, 3.78-3.62 (m, 12H), 3.57-3.50 (m, 4H), $3.37(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $151.29,151.07,142.34,132.56,128.08$, 127.92, 127.43, 127.09, 127.01, 119.20, 116.17, 111.11, $110.57,72.05,72.01,71.04,70.93,70.82,70.80,70.70,70.68,69.91,69.29,69.15,59.13,28.87$; IR
(KBr) $2922(v \mathrm{C}-\mathrm{H}), 2222(v \mathrm{C} \equiv \mathrm{N})$, $1414(v \mathrm{C}=\mathrm{C}-\mathrm{H})$, 1321 ($\delta \mathrm{CH}_{2}-\mathrm{Br}$), $1060\left(\mathrm{v}_{\mathrm{s}} \mathrm{C}-\mathrm{O}-\mathrm{C}\right)$, $953(\delta$ $\mathrm{C}=\mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1}$; ESI-MS: $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{NO}_{8} \mathrm{Br}(\mathrm{m} / \mathrm{z})=542[\mathrm{M}-\mathrm{Br}]^{+}$.

Bis-ester 11. To a solution of 2,5-bis(ethoxymethyl)benzene-1,4-diol diethyl 2,5dihydroxyterephthalate ($10.17 \mathrm{~g}, 40 \mathrm{mmol}$) in 70 ml of dry DMF, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(18.20 \mathrm{~g}, 132$ mmol) was added under a nitrogen atmosphere, and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 15 min. Then, 2-(2-(2-methoxy)-ethoxy)ethyl-p-toluensulphonate ($28.06 \mathrm{~g}, 88 \mathrm{mmol}$) was added under a nitrogen atmosphere and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . The solvent was removed under reduced pressure and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$ and washed with 1 M NaOH solution ($3 \times 150 \mathrm{ml}$), 1 M HCl solution ($3 \times 150 \mathrm{ml}$) and then with water ($3 \times 150 \mathrm{ml}$). The solution was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. 21.0 g (96%) of $\mathbf{1 1}$ were isolated as a colorless oil. A.E. calculated for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{12}$ (546.6) $\mathrm{C}=57.14, \mathrm{H}=$ 7.74; found $\mathrm{C}=57.27, \mathrm{H}=7.54{ }^{1} \mathrm{H}-\mathrm{NMR}:\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~s}, 2 \mathrm{H}), 4.40-4.31(\mathrm{q}, 4 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 4.20-4.16(\mathrm{t}, 4 \mathrm{H}, J=5.2 \mathrm{~Hz}), 3.88-3.85(\mathrm{t}, 4 \mathrm{H}, J=5.2), 3.76-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.68-3.54(\mathrm{~m}$, $8 \mathrm{H}), 3.53-3.35(\mathrm{~m}, 4 \mathrm{H}), 3.07(\mathrm{~s}, 6 \mathrm{H}), 1.41-1.35(\mathrm{t}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.34,151.76,125.04,117.34,71.77,70.76,70.51,70.38,69.73,69.52,61.10,58.81,14.13$; IR (KBr) $2875(v \mathrm{C}-\mathrm{H}), 1728(v \mathrm{C}=\mathrm{O}), 1105\left(\mathrm{v}_{\mathrm{s}} \mathrm{C}-\mathrm{O}-\mathrm{C}\right) \mathrm{cm}^{-1}$.

Bis-alcohol 12. To a solution of bis-ester $11(5.02 \mathrm{~g}, 9.2 \mathrm{mmol})$ in 30 ml of dry THF at $0{ }^{\circ} \mathrm{C}$, a 1 M solution of $\mathrm{LiAlH}_{4}(95 \mathrm{ml}, 95 \mathrm{mmol})$ was added dropwise over a period of 1 h under a nitrogen atmosphere. The solution was heated to reflux for 30 min and then cooled to $0^{\circ} \mathrm{C}$. The excess of LiAlH_{4} was quenched with ethyl acetate and water. The mixture was concentrated under reduced pressure and then diluted with water (50 ml). The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 50 \mathrm{ml})$ and dried over anhydrous MgSO_{4}. The solvent was removed under reduced pressure. 3.96 g (93%) of $\mathbf{1 2}$ were isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.85(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 4 \mathrm{H})$, 4.16-4.13 (m, 4H), 3.83-3.80 (m, 4H), 3.68-3.62 (m, 12H), 3.55-3.53 (m, 4H), 3.36 (s, 6H); ${ }^{13} \mathrm{C}-$ NMR (62.9 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.32,130.94,114.57,72.12,70.85,70.81,70.76,69.90,69.09$, 62.02, 59.20; IR (KBr) 3434 ($v \mathrm{O}-\mathrm{H}$), 2874 ($v \mathrm{C}-\mathrm{H}$), 1502 ($v \mathrm{C}=\mathrm{C}$), 1200 ($\delta \mathrm{C}-\mathrm{H}, \delta \mathrm{O}-\mathrm{H}$), 1061 (v C-O-C) cm^{-1}; ESI-MS: $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{10}(\mathrm{~m} / \mathrm{z})=485[\mathrm{M}+\mathrm{Na}]^{+}$.

Dibromobenzyl derivative 13. To a solution of bis-alcohol $\mathbf{1 2}$ ($2.0 \mathrm{~g}, 4.3 \mathrm{mmol}$) in 30 ml of dry THF at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere, a solution of $\mathrm{PBr}_{3}(2.91 \mathrm{~g}, 10.8 \mathrm{mmol})$ in 5 ml of dry THF was added dropwise over a period of 20 min . The resulting solution was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ and then heated to reflux for 4 h . The solvent was removed under reduced pressure and the crude
product purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: ethyl acetate/petroleum ether 6:4). $1.80 \mathrm{~g}(71 \%)$ of $\mathbf{1 3}$ were isolated as a yellow oil. A.E. calculated for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Br}_{2}$ (588.3) $\mathrm{C}=$ 44.91, $\mathrm{H}=6.16$; found $\mathrm{C}=45.07, \mathrm{H}=6.12 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.89(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 4 \mathrm{H})$, 4.18-4.15 (t, 4H, $J=4.7 \mathrm{~Hz}$), 3.89-3.85 (t, 4H, $J=4.7 \mathrm{~Hz}), 3.76-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.65(\mathrm{~m}, 8 \mathrm{H})$, 3.56-3.54 (m, 4H), $3.38(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.68,127.94,115.36,71.87$, 70.84, 70.64, 70.51, 69.67, 68.95, 58.97, 28.41; IR (KBr) 2872 ($v \mathrm{C}-\mathrm{H}$), 1506 ($v \mathrm{C}=\mathrm{C}$), 1225 ($\delta \mathrm{C}-\mathrm{H}$), $1105(\delta \mathrm{C}-\mathrm{Br}), 1058(v \mathrm{C}-\mathrm{O}-\mathrm{C}) \mathrm{cm}^{-1}$.

Bis-phosphonate 14. Dibromobenzyl derivative $13(1.60 \mathrm{~g}, 2.72 \mathrm{mmol})$ and triethylphosphite (1.13 $\mathrm{g}, 6.80 \mathrm{mmol}$) were brought to $150{ }^{\circ} \mathrm{C}$ for 3 h . The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: ethyl acetate/petroleum ether 1:1, then ethyl acetate/ethanol 9:1). $1.60 \mathrm{~g}(84 \%)$ of $\mathbf{1 4}$ were isolated as a colorless oil. A.E. calculated for $\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{O}_{14} \mathrm{P}_{2}(702.7) \mathrm{C}=$ $51.28, \mathrm{H}=8.03$; found $\mathrm{C}=50.96, \mathrm{H}=7.89 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{~s}, 2 \mathrm{H}), 4.07-3.93$ $(\mathrm{m}, 12 \mathrm{H}), 3.79-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.69-3.58(\mathrm{~m}, 12 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{~s}, 6 \mathrm{H}), 3.22-3.12(\mathrm{~d}, 4 \mathrm{H}$, $J=25.0 \mathrm{~Hz}), 1.20-1.15(\mathrm{t}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.32,119.93-119.84$ $\left(\mathrm{d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 115.36,71.72,70.56,70.54,70.35,69.63,68.58,61.80-61.70\left(\mathrm{~d}, J_{\mathrm{CP}}=6.4 \mathrm{~Hz}\right)$, $58.81,27.27-25.05\left(\mathrm{~d}, J_{\mathrm{CP}}=139.0 \mathrm{~Hz}\right), 16.25-16.19\left(\mathrm{~d}, J_{\mathrm{CP}}=6.3 \mathrm{~Hz}\right) ;$ IR $(\mathrm{KBr}) 2874(v \mathrm{C}-\mathrm{H}), 1249$ ($v \mathrm{O}-\mathrm{P}=\mathrm{O}$), 1213 (v P-O-C), $1053\left(v_{\mathrm{s}} \mathrm{C}-\mathrm{O}-\mathrm{C}\right) \mathrm{cm}^{-1}$

FIGURE S1

©

FIGURE S2

ppm	150	140	130	120	110	100	90	80	70	60

FIGURE S3

FIGURE S4

$\frac{g}{4}$
$\dot{子}$

 (|) \mid

File \# 1 : STPIR1

FIGURE S6

File \# 1 : AMPIR

FIGURE S7

FIGURE S9

\mathbf{m} / \mathbf{z}	relative intensity (\%)	
453.7	1409711	(100)
454.2	835890	(59.3)
454.7	1053838	(74.8)
455.2	681474	(48.3)
455.7	760059	(53.9)
456.2	359662	(25.5)
456.7	122393	(8.7)

CALCULATED

ISO:C49H57N5O8Zn


```
m/z relative intensity (%)
    453.7 100.0
    454.2 57.2
    454.7 75.1
    455.2 45.2
    455.7 54.3
    456.2 25.6
    456.7 8.8
```


FIGURE S10

m/z relative intensity (\%)

462.3	1155944	(100)
462.8	667345	(57.8)
463.3	919709	(79.6)
463.8	441130	(38.2)
464.3	245403	(21.2)
464.8	98008	(8.5)

CALCULATED

ISO:C50H63N5O8Zn


```
m/z Relative Intensity (%)
    462.7 100
    463.2 58.4
    463.7 75.8
    464.2 46.1
    464.7 54.9
    465.2 26.6
    465.7 9.2
```


Spectrophotometric titrations

$\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was an analytical grade product from Aldrich. Zn^{2+} stock solutions were titrated against EDTA following standard procedures (ammonium buffer at pH = 10 and Eriochrome Black T as indicator). Solutions for spectrophotometric measurements and titrations were prepared using HPLC-grade $\mathrm{CH}_{3} \mathrm{CN}$.
The binding constant determination for $\mathbf{2 -} \mathbf{Z n}^{\mathbf{2 +}}$ and $\mathbf{3 - Z} \mathbf{n}^{\mathbf{2 +}}$ was performed by plotting the fluorescence changes as a function of $\left[\mathrm{Zn}^{2+}\right]$ (see figure S12). Fitting of the titration curves was carried out with the software package Scientist 2.01 [1]. A model involving the formation of a $1: 1$ complex of Zn^{2+} with 2 and $\mathbf{3}$ was used. Total concentration of $\mathbf{2}$ and $\mathbf{3}$ was set as invariable parameter.
[1] Scientist 2.01, Micromath Scientific Software, Salt Lake City, 1995.

FIGURE S11

Fluorescence spectral changes observed upon the addition of $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to $0.099 \mu \mathrm{M}$ of $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$. $\lambda_{\text {exc }}=413 \mathrm{~nm}$.

Change in the emission intensity as a function of $\left[\mathrm{Zn}^{2+}\right]$ for 2 . The apparent dissociation constant $\left(\mathrm{pK}_{\mathrm{d}}\right.$ >7) for Zn^{2+} was calculated from the above data with the software package Scientist 2.01.

Fluorescence spectral changes observed upon the addition of $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to $0.104 \mu \mathrm{M}$ of $\mathbf{3}$ in $\mathrm{CH}_{3} \mathrm{CN}$. $\lambda_{\text {exc }}=433 \mathrm{~nm}$.

Change in the emission intensity as a function of $\left[\mathrm{Zn}^{2+}\right]$ for 3 . The apparent dissociation constant $\left(\mathrm{pK}_{\mathrm{d}}\right.$ >7) for Zn^{2+} was calculated from the above data with the software package Scientist 2.01.

