A solid-state ⁵⁵Mn NMR spectroscopy and DFT investigation of manganese pentacarbonyl compounds

Kirk W. Feindel, Kristopher J. Ooms, and Roderick E. Wasylishen*

Gunning/Lemieux Chemistry Centre University of Alberta Edmonton, Alberta T6G 2G2 Canada

* Corresponding Author: Roderick E. Wasylishen
Email: roderick.wasylishen@ualberta.ca
Tel: (780) 492-4336
Fax: (780) 492-8231

		δ_{11}/ppm	δ_{22}/ppm	δ_{33}/ppm
ClMn(CO) ₅		-512.7	-594.6	-1772.7
BrMn(CO) ₅		-666.1	-752.8	-1821.1
IMn(CO) ₅		-1017.5	-1065.0	-1967.5
Hg[Mn(CO) ₅] ₂		-2199.7	-2199.7	-2449.7
CH ₃ Mn(CO) ₅		-2195.0	-2195.0	-2375.0
PhCH ₂ Mn(CO) ₅		-1873.0	-1999.0	-2293.0
Ph ₃ SnMn(CO) ₅ ^a		-2393.5	-2603.1	-2608.5
Ph ₂ ClSnMn(CO) ₅ si	te 1	-2397.7	-2414.7	-2567.7
si	ite 2	-2364.0	-2382.0	-2544.0

Table S1. Principal components of the ⁵⁵Mn CS tensors measured from powder samples.

a) From Ref. 1.

	σ_{11}/ppm	σ_{22}/ppm	σ_{33}/ppm	$\sigma_{iso}\!/ppm$	δ_{iso}/ppm	Ω / ppm	κ	$C_{\rm Q}$ / MHz	$\eta_{\boldsymbol{Q}}$
MnO ₄ -b	-	-	-	-3492	0	-	-	-	-
FMn(CO) ₅ ^c	-2635	-2635	-1268	-2180	-1312	1367	1.00	-3.5	0.00
ClMn(CO)5 ^d	-2237	-2224	-1379	-1947	-1545	858	0.97	-6.6	0.57
ClMn(CO) ₅ ^c	-2146	-2146	-1189	-1827	-1665	956	1.00	10.6	0.00
BrMn(CO) ₅ ^c	-1966	-1966	-1151	-1694	-1798	814	1.00	14.6	0.00
IMn(CO) ₅ ^d	-1946	-1940	-1323	-1584	-1908	624	0.98	7.1	0.02
IMn(CO) ₅ ^c	-1664	-1664	-1109	-1479	-2013	555	1.00	13.2	0.00
Cl ₃ SnMn(CO) ₅ ^d site 1	-1535	-1402	-1157	-1365	-2127	377	0.30	46.8	0.30
site 2	-1489	-1371	-1248	-1369	-2123	241	0.04	-18.3	0.38
PhCH ₂ Mn(CO) ₅ ^{c,e}	-1549	-1483	-1063	-1365	-2127	486	0.70	-19.1	0.10
$Hg[Mn(CO)_5]_2^d$	-1255	-1235	-1031	-1173	-2319	224	0.80	21.9	0.10
CH ₃ Mn(CO) ₅ ^{c,e}	-1239	-1237	-1021	-1166	-2326	218	1.00	-28.2	0.00
HMn(CO) ₅ ^f	-1038	-997	-906	-980	-2512	132	0.39	-50.7	0.43
$HMn(CO)_5^c$	-1047	-931	-931	-970	-2522	116	-1.00	-47.9	0.00
HMn(CO) ₅ ^g	-942	-942	-852	-912	-2580	90	1.00	-19.4	0.00
Ph ₃ SnMn(CO) ₅ ^d	-714	-626	-590	-643	-2677	124	-0.41	19.9	0.81

Table S2. Non-relativistic DFT calculated ⁵⁵Mn NMR parameters for optimized and experimental geometries.^a

a) The magnetic shielding parameters are defined as follows:² $\sigma_{11} \leq \sigma_{22} \leq \sigma_{33}$, $\sigma_{iso} = (\sigma_{11} + \sigma_{22} + \sigma_{33})/3$, $\Omega = \sigma_{33} - \sigma_{11}$, $\kappa = 3(\delta_{22} - \delta_{iso})/\Omega$, $\delta_{sample} = \sigma_{ref}(calc) - \sigma_{sample}(calc)$. The EFG parameters are incorporated in $C_Q = eQV_{ZZ}/h$ and $\eta_Q = (V_{XX} - V_{YY})/V_{ZZ}$ where $|V_{XX}| \leq |V_{YY}| \leq |V_{ZZ}|$, *e* is the electron charge and *h* is the Planck constant.

b) Optimized to $T_{\rm d}$ symmetry ($r_{\rm (Mn-O)} = 1.621$ Å)

c) Structures were optimized to C_{4v} symmetry, except where noted.

d) Experimental single-crystal X-ray diffraction structure.

e) Due to ligand, optimized geometry deviates from C_{4v} symmetry.

f) Experimental single-crystal neutron diffraction structure.³

g) Experimental gas-phase structure from microwave spectroscopy.⁴

	σ_{11}/ppm	σ_{22}/ppm	σ_{33}/ppm	σ_{iso}/ppm	δ_{iso}/ppm	Ω / ppm	к	$C_{\rm Q}$ / MHz	η_Q
MnO ₄ ^{-b}	-	-	-	-3401	0	_	-	-	-
MnO_4^{-c}	-3275	-3231	-3190	-3232	-169	85	-0.05	-5.46	0.246
ClMn(CO) ₅ ^d	-2151	-2139	-1301	-1864	-1537	850	0.97	-6.29	0.539
IMn(CO) ₅ ^d	-1827	-1821	-1242	-1630	-1771	585	0.98	7.79	0.015
Cl ₃ SnMn(CO) ₅ ^d site 1	-1627	-1332	-1229	-1396	-2005	398	-0.49	44.22	0.450
site 2	-1586	-1455	-1178	-1406	-1995	408	0.36	-22.86	0.608
$Hg[Mn(CO)_5]_2^d$	-1477	-1463	-965	-1302	-2099	512	0.95	-18.66	0.173
$Mn_2(CO)_{10}^{d}$	-1198	-1189	-985	-1124	-2277	213	0.92	-6.79	0.436
η^5 -CpMn(CO) ₃ ^d	-1281	-1234	-714	-1077	-2324	567	0.83	66.32	0.068
HMn(CO) ₅ ^e	-966	-926	-836	-910	-2492	130	0.38	-52.15	0.433
HMn(CO) ₅ ^f	-872	-872	-785	-843	-2558	87	1.00	-19.79	0.000
$Ph_3SnMn(CO)_5^d$	-682	-583	-540	-602	-2799	142	-0.40	23.41	0.780

Table S3. Scalar + spin-orbit relativistic DFT calculated ⁵⁵Mn NMR parameters for experimental geometries.

a) The magnetic shielding parameters are defined as follows:² $\sigma_{11} \leq \sigma_{22} \leq \sigma_{33}$, $\sigma_{iso} = (\sigma_{11} + \sigma_{22} + \sigma_{33})/3$, $\Omega = \sigma_{33} - \sigma_{11}$, $\kappa = 3(\delta_{22} - \delta_{iso})/\Omega$, $\delta_{sample} = \sigma_{ref}(calc) - \sigma_{sample}(calc)$. The EFG parameters are incorporated in $C_Q = eQV_{ZZ}/h$ and $\eta_Q = (V_{XX} - V_{YY})/V_{ZZ}$ where $|V_{XX}| \leq |V_{YY}| \leq |V_{ZZ}|$, *e* is the electron charge and *h* is the Planck constant.

b) Optimized to T_d symmetry ($r_{(Mn-O)} = 1.621$ Å)

- c) Experimental X-ray diffraction structure.
- d) Experimental single-crystal X-ray diffraction structure.
- e) Experimental single-crystal neutron diffraction structure.³

f) Experimental gas-phase structure from microwave spectroscopy.⁴

References

- 1. K. J. Ooms, K. W. Feindel, V. V. Terskikh and R. E. Wasylishen, *Inorg. Chem.*, 2006, **45**, 8492-8499.
- R. K. Harris, E. D. Becker, S. M. C. de Menezes, R. Goodfellow and P. Granger, *Pure Appl. Chem.*, 2001, 73, 1795-1818.
- S. J. La Placa, W. C. Hamilton, J. A. Ibers and A. Davison, *Inorg. Chem.*, 1969, 8, 1928-1935.
- 4. S. G. Kukolich and S. M. Sickafoose, *Inorg. Chem.*, 1994, **33**, 1217-1219.