Supplementary Information for

Using First Principles Calculations To Identify New Destabilized Metal Hydride Reactions for Reversible Hydrogen Storage

Sudhakar V. Alapati¹, J. Karl Johnson^{2,3}, and David S. Sholl^{1,3*} ¹Department. of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA ²Department. of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA ³National Energy Technology Laboratory Pittsburgh, PA 15236

Table S1: Enthalpy of reaction per mole of H_2 released for the reactions studied using the PW91 functional. ** indicates results for final materials with varying Si loading. For reactions involving LiBH₄, the enthalpy for the reaction with the hexagonal and orthorhombic polymorphs of LiBH₄ is denoted by (h) and (o), respectively.

No	Reaction	wt.% H ₂	Δ <i>U</i> ₀ (PAW)
	Calibration reactions and reactions for comparison with previous work		
1	$MgH_2 \rightarrow Mg + H_2$	7.67	65.1
2	$2 \text{ LiH} \rightarrow 2 \text{ Li} + \text{H}_2$	12.70	171.4
3	$2 MgH_2 + Si \rightarrow Mg_2Si + 2 H_2$	5.00	37.9
4	$MgH_2 + 2 LiBH_4 \rightarrow 2 LiH + MgB_2 + 4 H_2$	11.56	66.8 (o) 58.6 (h)
5	$CaH_2 \rightarrow Ca + H_2$	4.80	175.2
6	$2 \text{ AlH}_3 \rightarrow 2 \text{ Al} + 3 \text{ H}_2$	10.07	11.1
7	$Ca(AlH_4)_2 \rightarrow 2 Al + Ca + 4 H_2$	7.91	54.3
8	$Ca(AlH_4)_2 \rightarrow 2 Al + CaH_2 + 3 H_2$	5.93	14.0
9	$LiBH_4 \rightarrow LiH + B + 1.5 H_2$	13.91	82.4 (o) 71.5 (h)
10	$LiNH_2 + 2 LiH \rightarrow Li_3N + 2 H_2$	10.39	109.4
11	$LiBH_4 + 2 LiNH_2 \rightarrow Li_3BN_2 + 4 H_2$	11.93	24.3 (o) 20.2 (h)
	Reaction with LiNH₂		
12	**3 LiNH ₂ + 2 LiH + Si \rightarrow Li ₅ N ₃ Si + 4 H ₂ (10/11 Si atoms)	7.16	34.2/23.3
13	$LiNH_2 + MgH_2 \rightarrow LiMgN + 2 H_2$	8.19	32.0
14	$2 \operatorname{LiNH}_2 + 3 \operatorname{MgH}_2 \rightarrow \operatorname{Mg}_3\operatorname{N}_2 + 2 \operatorname{LiH} + 4 \operatorname{H}_2$	6.47	6.9

^{*} Corresponding author. Email: sholl@andrew.cmu.edu

15	$2 \operatorname{LiNH}_2 + \operatorname{MgH}_2 + \operatorname{Si} \rightarrow \operatorname{MgN}_2\operatorname{Si} + 2 \operatorname{LiH} + 2 \operatorname{H}_2$	4.02	-86.0
16	$LiBH_4 + 3 MgH_2 + 3 LiNH_2 \rightarrow Mg_3BN_3 + 4 LiH + 6$	714	5.8 (0)
10	H ₂	/.14	3.1 (h)
17	$N(SiH_3)_3 + 3 LiNH_2 \rightarrow N_4Si_3 + 3 LiH + 6 H_2$	6.86	-38.0
	Reaction with LiBH ₄		
18	$6 \text{LiBH}_{4} + \text{Si} \rightarrow 6 \text{LiH} + \text{B}_{2} \text{Si} + 9 \text{H}_{2}$	11 45	117.9 (o)
10	$0 \text{ EID} \Pi_4 + 51 \rightarrow 0 \text{ EIII} + D_6 51 + 2 \Pi_2$	11.45	106.9 (h)
19	$4 \text{LiBH}_4 + \text{M}\sigma\text{H}_2 \rightarrow 4 \text{LiH} + \text{M}\sigma\text{B}_4 + 7 \text{H}_2$	12 46	69.2 (o)
17		12.40	59.9 (h)
			71.5-75.5
20	$7 \text{LiBH}_4 + \text{MgH}_2 \rightarrow 7 \text{LiH} + \text{MgB}_7 + 115 \text{H}_2$	12.99	(0)
20	$+ \operatorname{ElD114} + \operatorname{Hig112} + + \operatorname{El11} + \operatorname{HigD}_{+} + \operatorname{II.0} + \operatorname{II}_{2}$	12.99	61.5-65.5
			(h)
21	$6 \operatorname{LiBH}_4 + 7 \operatorname{Si} \to 6 \operatorname{LiSi} + \operatorname{SiB}_6 + 12 \operatorname{H}_2$	7.39	109.9(o)
			101.8(h)
22	$MgH_2 + 9 LiBH_4 + LiNH_2 \rightarrow MgB_9N + 10 LiH + 14$	11.5	108.4(o)
	H ₂	11.0	98.0(h)
	Reaction of MgH₂, LiH and Si		
23	$12 \operatorname{LiH} + 3 \operatorname{MgH}_2 + 4 \operatorname{Si} \rightarrow \operatorname{Li}_{12} \operatorname{Mg}_3 \operatorname{Si}_4 + 9 \operatorname{H}_2$	6.34	85.0
24	$2 \text{ NaMgH}_3 + 3 \text{ Si} \rightarrow \text{Mg}_2\text{Si} + 2 \text{ NaSi} + 3 \text{ H}_2$	3.27	57.5
25	$4 \text{ MgH}_2 + \text{Al} + 6 \text{ Si} \rightarrow \text{AlMg}_4\text{Si}_6 + 4 \text{ H}_2$	2.68	92.4
26	$4 \operatorname{MgH}_2 + \operatorname{AlH}_3 + 6 \operatorname{Si} \rightarrow \operatorname{AlMg}_4 \operatorname{Si}_6 + 5.5 \operatorname{H}_2$	3.65	70.2
27	$2 \operatorname{LiH} + 2 \operatorname{Si} \to 2 \operatorname{LiSi} + \operatorname{H}_2$	2.80	91.3
28	$2 \operatorname{LiH} + \operatorname{Si} \to \operatorname{Li}_2 \operatorname{Si} + \operatorname{H}_2$	4.58	103.6
29	$7 \operatorname{LiH} + 2 \operatorname{Si} \to \operatorname{Li}_7 \operatorname{Si}_2 + 1.5 \operatorname{H}_2$	2.70	1139.9
	Reactions with CaH₂		
30	$CaH_2 + 2 Al \rightarrow Al_2Ca + H_2$	2.10	73.8
31	$3 \operatorname{CaH}_2 + 2 \operatorname{Al} + 2 \operatorname{Si} \rightarrow \operatorname{Al}_2\operatorname{Ca}_3\operatorname{Si}_2 + 3 \operatorname{H}_2$	2.56	71.8
32	$CaH_2 + 2Al + 2Si \rightarrow Al_2CaSi_2 + H_2$	1.33	16.3
33	$CaH_2 + Si \rightarrow CaSi + H_2$	2.88	80.9
34	$CaH_2 + 2 Si \rightarrow CaSi_2 + H_2$	2.06	61.7
35	$5 \operatorname{CaH}_2 + 3 \operatorname{Si} \rightarrow \operatorname{Ca}_5 \operatorname{Si}_3 + 5 \operatorname{H}_2$	3.43	100.9
36	$CaH_2 + LiH + 2 Si \rightarrow CaLiSi_2 + 1.5 H_2$	2.85	65.0
37	$2 \operatorname{CaH}_2 + \operatorname{LiH} + 3 \operatorname{Si} \rightarrow \operatorname{Ca}_2 \operatorname{LiSi}_3 + 2.5 \operatorname{H}_2$	2.86	64.6
38	$CaH_2 + 2 LiH \rightarrow CaLi_2 + 2 H_2$	6.96	78.3
20	$C_{2}H_{1} + 6I_{2}DH_{1} \rightarrow C_{2}D_{1} + 6I_{2}H + 10H_{2}$	11.60	62.7 (o)
39	$CaH_2 + 0 LIBH_4 \rightarrow CaB_6 + 0 LIH + 10 H_2$	11.09	52.9 (h)
40	$CaH_2 + MgH_2 + Si \rightarrow CaMgSi + 2 H_2$	4.19	51.8
41	$3 \operatorname{CaH}_2 + \operatorname{LiBH}_4 + \overline{3 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_3 \operatorname{BN}_3 + 4 \operatorname{LiH} + 6}$	5 50	38.8 (o)
41	H ₂	3.38	36.1 (h)
42	$CaH_2 + 2 MgH_2 \rightarrow CaMg_2 + 3 H_2$	6.38	88.3
43	$CaH_2 + LiNH_2 \rightarrow CaLiN + 2 H_2$	6.20	88.1
44	$2 \operatorname{CaH}_2 + \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2 \operatorname{HN} + \operatorname{LiH} + 2 \operatorname{H}_2$	3.76	74.7
45	$3 \operatorname{CaH_2} + 3 \operatorname{LiNH_2} + Al \rightarrow \operatorname{Ca_3AlN_3} + 3 \operatorname{LiH} + 4.5 \operatorname{H_2}$	4.08	34.8
46	$3 \text{ CaH}_2 + 3 \text{ LiNH}_2 + \text{AlH}_3 \rightarrow \text{Ca}_3 \text{AlN}_3 + 3 \text{ LiH} + 6 \text{ H}_2$	5.37	28.9

Electronic Supplementary Material for PCCP This journal is © The Owner Societies 2007

47	$CaH_2 + 2 MgH_2 + 2 LiNH_2 \rightarrow CaMg_2N_2 + 2 LiH + 4$ H ₂	5.73	29.2
	Reaction of Ca(AlH ₄) ₂ and Si		
48	$Ca(AlH_4)_2 + Si \rightarrow 2Al + CaSi + 4H_2$	6.30	30.7
49	$Ca(AIH_4)_2 + 2 Si \rightarrow Al_2CaSi_2 + 4 H_2$	5.10	14.5
50	$3 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 2 \operatorname{Si} \rightarrow 2 \operatorname{Al}_2\operatorname{Ca} + \operatorname{Al}_2\operatorname{Ca}\operatorname{Si}_2 + 12 \operatorname{H}_2$	6.69	24.1
51	$3 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 2 \operatorname{Si} \rightarrow 4 \operatorname{Al} + \operatorname{Al}_2\operatorname{Ca}_3\operatorname{Si}_2 + 12 \operatorname{H}_2$	6.69	28.4
52	$3 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 2 \operatorname{Si} \rightarrow 4 \operatorname{AlH}_3 + \operatorname{Al}_2\operatorname{Ca}_3\operatorname{Si}_2 + 6 \operatorname{H}_2$	3.34	45.4
	Reaction of Ca(AlH ₄) ₂ and MgH ₂		
53	$\begin{array}{c} 6 \operatorname{Ca}(\mathrm{AlH}_4)_2 + 17 \operatorname{MgH}_2 \rightarrow \mathrm{Al}_{12} \mathrm{Mg}_{17} + 6 \operatorname{CaH}_2 + 35 \\ \mathrm{H}_2 \end{array}$	6.67	35.5
54	$Ca(AlH_4)_2 + 2 MgH_2 \rightarrow CaMg_2 + 2 Al + 6 H_2$	7.83	51.6
55	$Ca(AlH_4)_2 + 2 MgH_2 \rightarrow CaMg_2 + 2 AlH_3 + 3 H_2$	3.92	91.7
	Reaction of Ca(AlH ₄) ₂ and LiH		
56	$Ca(AlH_4)_2 + 2 LiH \rightarrow 2 AlLi + CaH_2 + 4 H_2$	6.85	33.3
57	$2 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 6 \operatorname{LiH} \rightarrow 2 \operatorname{Al}_2\operatorname{Li}_3 + 2 \operatorname{CaH}_2 + 9 \operatorname{H}_2$	7.22	43.9
58	$2 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 9 \operatorname{LiH} \rightarrow \operatorname{Al}_4 \operatorname{Li}_9 + 2 \operatorname{CaH}_2 + 10.5 \operatorname{H}_2$	7.69	60.5
59	$3 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 2 \operatorname{LiH} \rightarrow 2 \operatorname{Al}_3\operatorname{Li} + 3 \operatorname{CaH}_2 + 10 \operatorname{H}_2$	6.27	20.5
60	$3 \operatorname{Ca}(AlH_4)_2 + 4 \operatorname{LiH} \rightarrow 4 \operatorname{AlLi} + \operatorname{Al}_2\operatorname{Ca} + 2 \operatorname{CaH}_2 + 12 \operatorname{H}_2$	7.17	31.8
61	$3 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 8 \operatorname{LiH} \rightarrow 2 \operatorname{Al}_3\operatorname{Li} + 3 \operatorname{Ca}\operatorname{Li}_2 + 16 \operatorname{H}_2$	8.74	76.9
62	$4 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 26 \operatorname{LiH} \rightarrow 2 \operatorname{Al}_4 \operatorname{Li}_9 + 4 \operatorname{CaLi}_2 + 29 \operatorname{H}_2$	9.65	91.0
	Reaction of Ca(AlH ₄) ₂ , LiH and Si		
63	$Ca(AlH_4)_2 + 2LiH + 2Si \rightarrow 2AlLiSi + CaH_2 + 4H_2$	4.64	17.6
64	$Ca(AlH_4)_2 + LiH + 2 Si \rightarrow 2 Al + CaLiSi_2 + 4.5 H_2$	5.47	31.0
65	$Ca(AlH_4)_2 + LiH + 2 Si \rightarrow 2 AlH_3 + CaLiSi_2 + 1.5 H_2$	1.82	70.2
66	$2 \operatorname{Ca}(AlH_4)_2 + LiH + 3 \operatorname{Si} \rightarrow 4 \operatorname{Al} + \operatorname{Ca}_2 \operatorname{LiSi}_3 + 8.5$ H_2	5.79	28.8
67	$\begin{array}{c} 2 \operatorname{Ca}(\mathrm{AlH}_4)_2 + \mathrm{LiH} + 3 \operatorname{Si} \rightarrow 4 \operatorname{AlH}_3 + \mathrm{Ca}_2 \mathrm{LiSi}_3 + 2.5 \\ \mathrm{H}_2 \end{array}$	1.70	70.7
	Reaction of Ca(AlH₄)₂ and LiBH₄		
68	$2 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 4 \operatorname{LiBH}_4 \rightarrow 2 \operatorname{AlB}_2 + 2 \operatorname{AlH}_3 + 2 \operatorname{CaLi}_2 + 13 \operatorname{H}_2$	9.14	92.0 (o) 86.9 (h)
69	$4 \operatorname{Ca}(AlH_4)_2 + 4 \operatorname{LiBH}_4 \rightarrow 2 \operatorname{Al}_3 \operatorname{Li} + 2 \operatorname{AlB}_2 + 2 \operatorname{LiH} + 2 \operatorname{CaH}_2 + 21 \operatorname{H}_2$	8.56	67.9 (o) 64.7 (h)
70	$2 \operatorname{Ca}(AlH_4)_2 + 6 \operatorname{LiBH}_4 \rightarrow \operatorname{CaB}_6 + 2 \operatorname{Al}_2\operatorname{Li}_3 + \operatorname{CaH}_2 + 19 \operatorname{H}_2$	10.85	53.4 (o) 48.3 (h)
	Reaction of Ca(AlH₄)₂ and LiNH₂		
71	$Ca(AlH_4)_2 + LiNH_2 \rightarrow CaH_2 + AlLi + AlN + 4H_2$	6.46	-20.5
72	$Ca(AlH_4)_2 + 2 LiNH_2 \rightarrow CaH_2 + 2 LiH + 2 AlN + 4 H_2$	5.46	-73.3
73	$Ca(AlH_4)_2 + 2 LiNH_2 \rightarrow CaLi_2 + 2 AlN + 6 H_2$	8.19	7.4
74	$Ca(AlH_4)_2 + 3 LiNH_2 \rightarrow CaH_2 + AlLi_3N_2 + AlN + 6$ H ₂	7.09	-26.4

75	$Ca(AlH_4)_2 + 3 LiNH_2 \rightarrow CaH_2 + 2 AlN + Li_3N + 6$ H ₂	7.09	-12.4
76	$Ca(AlH_4)_2 + 3 LiNH_2 \rightarrow CaH_2 + 2 AlLi + LiN_3 + 6$ H ₂	7.09	86.0
77	$Ca(AlH_4)_2 + 3 LiNH_2 \rightarrow CaLi_2 + LiN_3 + 2 Al + 7 H_2$	8.27	109.1
78	$Ca(AlH_4)_2 + 3 LiNH_2 \rightarrow CaLi_2 + LiN_3 + 2 AlH_3 + 4 H_2$	4.72	182.7
79	$Ca(AlH_4)_2 + 4 LiNH_2 \rightarrow CaH_2 + AlN + AlLi + LiN_3$ $+ 2 LiH + 6 H_2$	6.25	40.9
80	$Ca(AlH_4)_2 + 4 LiNH_2 \rightarrow CaLi_2 + AlN + AlLi + LiN_3 + 8 H_2$	8.33	80.3
81	$Ca(AlH_4)_2 + 5 LiNH_2 \rightarrow CaH_2 + 4 LiH + 2 AlN + LiN_3 + 6 H_2$	5.33	15.6
82	$Ca(AlH_4)_2 + 5 LiNH_2 \rightarrow CaH_2 + AlLi_3N_2 + LiN_3 + AlLi + 8 H_2$	7.45	55.0
83	$Ca(AlH_4)_2 + 5 LiNH_2 \rightarrow CaLi_2 + 2 LiH + 2 AlN + LiN_3 + 8 H_2$	7.45	54.0
84	$Ca(AlH_4)_2 + 6 LiNH_2 \rightarrow CaH_2 + 2 LiN_3 + 2 AlLi + 2$ LiH + 8 H ₂	8.38	27.6
85	$Ca(AlH_4)_2 + 6 LiNH_2 \rightarrow CaLi_2 + 2 LiN_3 + 2 AlLi + 10 H_2$	9.31	124.1
86	$2 \operatorname{Ca}(AlH_4)_2 + \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + \operatorname{AlN} + \operatorname{Al}_3\operatorname{Li} + 7$ H ₂	6.22	-7.0
87	$2 \operatorname{Ca}(\operatorname{AlH}_4)_2 + \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2 \operatorname{N} + \operatorname{AlLi} + 3 \operatorname{Al} + 9 \operatorname{H}_2$	8.00	41.7
88	$2 \operatorname{Ca}(AlH_4)_2 + LiNH_2 \rightarrow Ca_2N + Al_3Li + AlH_3 + 7.5$ H ₂	6.67	47.0
89	$2 \operatorname{Ca}(AlH_4)_2 + \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2N + AlLi + 3 \operatorname{AlH}_3 + 4.5$ H ₂	4.00	72.2
90	$2 \operatorname{Ca}(\mathrm{AlH}_4)_2 + \mathrm{LiNH}_2 \rightarrow \mathrm{Ca}_2\mathrm{N} + \mathrm{Al}_3\mathrm{Li} + \mathrm{Al} + 9 \mathrm{H}_2$	8.00	112.9
91	$2 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 2 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + 2 \operatorname{AlN} + 2 \operatorname{LiH} + 2 \operatorname{AlH}_3 + 4 \operatorname{H}_2$	3.23	-71.9
92	$2 \operatorname{Ca}(AlH_4)_2 + 2 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + 2 \operatorname{AlN} + 2 \operatorname{LiH} + 2 \operatorname{Al} + 7 \operatorname{H}_2$	5.65	-36.3
93	$2 \operatorname{Ca}(AlH_4)_2 + 2 \operatorname{LiNH}_2 \rightarrow \operatorname{CaLi}_2 + \operatorname{CaH}_2 + 2 \operatorname{AlN} + 2$ Al + 9 H ₂	7.27	9.3
94	$2 \operatorname{Ca}(AlH_4)_2 + 2 \operatorname{LiNH}_2 \rightarrow \operatorname{CaLi}_2 + \operatorname{CaH}_2 + 2 \operatorname{AlN} + 2$ AlH ₃ + 6 H ₂	4.84	8.4
95	$2 \operatorname{Ca}(AlH_4)_2 + 2 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2N + AlN + 3 \operatorname{Al} + 2$ LiH + 9 H ₂	7.27	18.2
96	$2 \operatorname{Ca}(\overline{\operatorname{AlH}_4})_2 + 2 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2 N + \operatorname{Al}_3 \operatorname{Li} + \operatorname{AlN} + \operatorname{LiH} + 9.5 \operatorname{H}_2$	7.67	21.4
97	$2 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 2 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2 N + \operatorname{AlN} + 3 \operatorname{AlH}_3 + 2$ LiH + 4.5 H ₂	3.63	25.3
98	$2 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + 3 \operatorname{AlN} + 3 \operatorname{LiH} + \operatorname{AlH}_3 + 6 \operatorname{H}_2$	4.44	-72.8
99	$2 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + 3 \operatorname{AlN} + 3 \operatorname{LiH} +$	5.54	-56.1

Electronic Supplementary Material for PCCP This journal is © The Owner Societies 2007

	Al + 7.5 H ₂		
100	$2 \operatorname{Ca}(AlH_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + \operatorname{Li}_3N + 2 \operatorname{AlN} + 2 \operatorname{AlH}_3 + 6 \operatorname{H}_2$	4.44	-11.4
101	$2 \operatorname{Ca}(AlH_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + \operatorname{Li}_3N + 2 \operatorname{AlN} + 2 \operatorname{Al} + 9 \operatorname{H}_2$	6.65	-3.9
102	$2 \operatorname{Ca}(AlH_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{CaH}_2 + \operatorname{CaLi}_2 + AlLi + 3$ AlN + 10 H ₂	7.39	-3.8
103	$2 \operatorname{Ca}(AlH_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2N + 2 \operatorname{AlN} + 2 \operatorname{AlLi} + \operatorname{LiH} + 10.5 \operatorname{H}_2$	7.76	8.4
104	$2 \operatorname{Ca}(AlH_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2N + Al_2Li_3 + 2 \operatorname{AlN} + 11 \operatorname{H}_2$	8.13	13.7
105	$2 \operatorname{Ca}(AlH_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2N + \operatorname{Li}_3N + AlN + 3 \operatorname{Al} + 11 \operatorname{H}_2$	8.13	34.8
106	$2 \operatorname{Ca}(AlH_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2N + \operatorname{Li}_3N + AlN + 3$ AlH ₃ + 6.5 H ₂	4.81	51.2
107	$2 \operatorname{Ca}(AlH_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + \operatorname{LiN}_3 + 2 \operatorname{AlLi}_1 + 2 \operatorname{Al}_2 + 9 \operatorname{H}_2$	6.65	61.7
108	$2 \operatorname{Ca}(AlH_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{CaLi}_2 + \operatorname{Al}_2\operatorname{Ca} + \operatorname{LiN}_3 + 2$ Al + 11 H ₂	8.13	79.6
109	$2 \operatorname{Ca}(AlH_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{CaH}_2 + \operatorname{CaLi}_2 + \operatorname{LiN}_3 + 4$ Al + 10 H ₂	7.39	80.3
110	$2 \operatorname{Ca}(AlH_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + \operatorname{LiN}_3 + 2 \operatorname{AlLi} + 2 \operatorname{AlH}_3 + 6 \operatorname{H}_2$	4.44	87.0
111	$2 \operatorname{Ca}(AlH_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{CaLi}_2 + Al_2Ca + \operatorname{LiN}_3 + 2$ AlH ₃ + 8 H ₂	5.92	105.2
112	$2 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{CaH}_2 + \operatorname{CaLi}_2 + \operatorname{LiN}_3 + 4$ AlH ₃ + 4 H ₂	2.96	184.1
113	$2 \operatorname{Ca}(AlH_4)_2 + 4 \operatorname{Li}NH_2 \rightarrow 2 \operatorname{Ca}H_2 + \operatorname{Li}_3N + 3 \operatorname{AlN} + AlLi + 10 \operatorname{H}_2$	6.82	-15.6
114	$2 \operatorname{Ca}(AlH_4)_2 + 4 \operatorname{Li}NH_2 \rightarrow \operatorname{Ca}_2N + AlLi_3N_2 + AlLi + AlN + Al + 12 H_2$	8.19	14.8
115	$2 \operatorname{Ca}(AlH_4)_2 + 4 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2N + AlLi_3N_2 + AlLi + AlN + AlH_3 + 10.5 \operatorname{H}_2$	7.16	15.3
116	$2 \operatorname{Ca}(AlH_4)_2 + 4 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2N + \operatorname{Li}_3N + 2 \operatorname{AlN} + AlLi + Al + 12 \operatorname{H}_2$	8.19	21.8
117	$2 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 4 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2 N + \operatorname{Li}_3 N + 2 \operatorname{AlN} + \operatorname{AlLi} + \operatorname{AlH}_3 + 10.5 \operatorname{H}_2$	7.16	23.3
118	$2 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 4 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + \operatorname{LiN}_3 + 3 \operatorname{AlLi} + \operatorname{AlN} + 10 \operatorname{H}_2$	6.82	43.4
119	$2 \operatorname{Ca}(AIH_4)_2 + 4 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + Al_2\operatorname{Li}_3 + \operatorname{LiN}_3 + AIN + AI + 10 \operatorname{H}_2$	6.82	45.2
120	$2 \operatorname{Ca}(AIH_4)_2 + 4 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + Al_2\operatorname{Li}_3 + \operatorname{LiN}_3 + AIN + AIH_3 + 8.5 H_2$	5.80	51.3
121	$2 \operatorname{Ca}(AlH_4)_2 + 4 \operatorname{Li}NH_2 \rightarrow \operatorname{Ca}_2N + \operatorname{Li}N_3 + 3 \operatorname{AlLi} + Al + 12 \operatorname{H}_2$	8.19	71.0
122	$2 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 4 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2 \operatorname{N} + \operatorname{LiN}_3 + 3 \operatorname{AlLi} +$	7.16	79.6

	$\Lambda 1 \Pi_{1} \pm 10.5 \Pi_{2}$		
	AIII $_3$ + 10.5 II 2 C ₂ (AIH) + 5 LiNH, \rightarrow 2 C ₂ H, + LiN + 2 LiH +		
123	$2 \operatorname{Ca}(\operatorname{AIH}_{4})_{2} + 3 \operatorname{LINH}_{2} \rightarrow 2 \operatorname{CaH}_{2} + \operatorname{LI}_{3}\operatorname{N} + 2 \operatorname{LIH} + 4 \operatorname{AIN} + 10 \operatorname{H}_{2}$	6.33	-36.8
124	$2 \operatorname{Ca}(AlH_4)_2 + 5 \operatorname{Li}NH_2 \rightarrow \operatorname{Ca}_2N + 4 \operatorname{AlN} + 5 \operatorname{Li}H + 10.5 \operatorname{H}_2$	6.65	-31.9
125	$2 \operatorname{Ca}(AlH_4)_2 + 5 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + \operatorname{LiN}_3 + 2 \operatorname{AlN} + 2 \operatorname{AlLi} + 2 \operatorname{LiH} + 10 \operatorname{H}_2$	6.33	22.3
126	$2 \operatorname{Ca}(AlH_4)_2 + 5 \operatorname{Li}NH_2 \rightarrow \operatorname{Ca}_2N + \operatorname{Li}N_3 + \operatorname{Al}_3\operatorname{Li} + AlN + 3 \operatorname{Li}H + 11.5 H_2$	7.28	51.3
127	$2 \operatorname{Ca}(AlH_4)_2 + 5 \operatorname{Li}NH_2 \rightarrow \operatorname{Ca}_2N + \operatorname{Li}N_3 + 3 \operatorname{AlLi} + \operatorname{AlN} + \operatorname{Li}H + 12.5 \operatorname{H}_2$	7.91	54.9
128	$2 \operatorname{Ca}(AlH_4)_2 + 5 \operatorname{Li}NH_2 \rightarrow 2 \operatorname{Ca}Li_2 + \operatorname{Li}N_3 + 2 \operatorname{Al}N + 2 \operatorname{Al} + 13 \operatorname{H}_2$	8.23	62.2
129	$2 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 5 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaLi}_2 + \operatorname{LiN}_3 + 2 \operatorname{AlN} + 2 \operatorname{AlH}_3 + 10 \operatorname{H}_2$	6.33	77.5
130	$3 \operatorname{Ca}(\mathrm{AlH}_4)_2 + \mathrm{LiNH}_2 \rightarrow 3 \operatorname{CaH}_2 + \mathrm{Al}_3\mathrm{Li} + \mathrm{AlN} + 2$ $\mathrm{AlH}_3 + 7 \operatorname{H}_2$	4.29	-6.1
131	$3 \operatorname{Ca}(AlH_4)_2 + \operatorname{LiNH}_2 \rightarrow 3 \operatorname{CaH}_2 + \operatorname{Al}_3\operatorname{Li} + \operatorname{AlN} + 2$ Al + 10 H ₂	6.13	-1.0
132	$3 \operatorname{Ca}(AlH_4)_2 + LiNH_2 \rightarrow Ca_2N + CaH_2 + Al_3Li + 3 Al + 12 H_2$	7.36	34.0
133	$3 \operatorname{Ca}(AlH_4)_2 + LiNH_2 \rightarrow Ca_2N + CaH_2 + AlLi + 5 Al + 12 H_2$	7.36	34.5
134	$3 \operatorname{Ca}(AlH_4)_2 + LiNH_2 \rightarrow Ca_2N + Al_2Ca + Al_3Li + Al + 13 H_2$	7.97	38.0
135	$3 \operatorname{Ca}(AlH_4)_2 + LiNH_2 \rightarrow Ca_2N + Al_2Ca + Al_3Li + AlH_3 + 11.5 H_2$	7.05	40.3
136	$3 \operatorname{Ca}(\operatorname{AlH}_4)_2 + \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2 N + \operatorname{CaH}_2 + \operatorname{Al}_3 \operatorname{Li} + 3$ AlH ₃ + 7.5 H ₂	4.60	47.8
137	$3 \operatorname{Ca}(\operatorname{AlH}_4)_2 + \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2 N + \operatorname{CaH}_2 + \operatorname{AlLi}_1 + 5$ AlH ₃ + 4.5 H ₂	2.76	73.5
138	$3 \operatorname{Ca}(AlH_4)_2 + 2 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{CaH}_2 + 2 \operatorname{AlLi} + 2 \operatorname{AlN} + 2 \operatorname{AlH}_3 + 8 \operatorname{H}_2$	4.59	-19.8
139	$3 \operatorname{Ca}(AlH_4)_2 + 2 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{CaH}_2 + 2 \operatorname{AlLi} + 2 \operatorname{AlN} + 2\operatorname{Al} + 11 \operatorname{H}_2$	6.31	-11.4
140	$3 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 2 \operatorname{LiNH}_2 \rightarrow \operatorname{CaH}_2 + 2 \operatorname{Al}_2\operatorname{Ca} + 2 \operatorname{AlN} + 2 \operatorname{LiH} + 12 \operatorname{H}_2$	6.88	-5.9
141	$3 \operatorname{Ca}(AlH_4)_2 + 2 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{CaH}_2 + Al_2Ca + 2 \operatorname{AlN} + 2 \operatorname{AlLi} + 12 \operatorname{H}_2$	6.88	-4.4
142	$3 \operatorname{Ca}(AIH_4)_2 + 2 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2N + \operatorname{Ca}_2I_2 + AIN + 5$ Al + 14 H ₂	8.03	38.6
143	$3 \operatorname{Ca}(\overline{\operatorname{AlH}_4})_2 + 2 \operatorname{LiNH}_2 \rightarrow \operatorname{Ca}_2 N + \operatorname{Ca}_2 I_2 + \operatorname{AlN} + 5$ AlH ₃ + 6.5 H ₂	3.73	70.4
144	$3 \operatorname{Ca}(AlH_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{CaH}_2 + 3 \operatorname{AlN} + Al_3 \operatorname{Li} + 2 \operatorname{LiH} + 11 \operatorname{H}_2$	5.92	-31.1
145	$3 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{CaH}_2 + \operatorname{Al}_2\operatorname{Li}_3 + 3 \operatorname{AlN}$	5.65	-23.3

	$+ AlH_3 + 10.5 H_2$		
146	$3 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{CaH}_2 + \operatorname{Al}_2\operatorname{Li}_3 + 3 \operatorname{AlN}$	6 16	10.0
140	$+ Al + 12 H_2$	0.40	-19.0
147	$3 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{CaH}_2 + \operatorname{Li}_3 N + 2 \operatorname{AlN} +$	2 72	10.5
147	$4 \operatorname{AlH}_3 + 6 \operatorname{H}_2$	5.25	-10.5
148	$3 \operatorname{Ca}(\mathrm{AlH}_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{CaH}_2 + \operatorname{Li}_3\mathrm{N} + 2 \operatorname{AlN} +$	6.46	0.3
140	4 Al + 12 H ₂	0.40	0.5
149	$3 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{CaH}_2 + \operatorname{LiN}_3 + 2 \operatorname{AlLi} +$	6 46	49 5
115	$4 \text{ Al} + 12 \text{ H}_2$	0.10	19.5
150	$3 \operatorname{Ca}(\operatorname{AlH}_4)_2 + 3 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{CaH}_2 + \operatorname{LiN}_3 + 2 \operatorname{AlLi}_1 +$	3 23	87 9
100	$4 \text{ AlH}_3 + 6 \text{ H}_2$	5.25	01.9
151	$3 \operatorname{Ca}(\operatorname{AIH}_4)_2 + 5 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{CaH}_2 + \operatorname{Li}_3 N + 2 \operatorname{AIL}_1 +$	6.71	-17.0
	$4 \text{ AIN} + 14 \text{ H}_2$		
152	$3 \operatorname{Ca}(\operatorname{AIH}_4)_2 + 5 \operatorname{L1NH}_2 \rightarrow 3 \operatorname{CaH}_2 + \operatorname{L1N}_3 + 4 \operatorname{AIL}_1 + 2 \operatorname{AIL}_3 + 4 \operatorname{AIL}_1 + 2 \operatorname{AIL}_3 + 4 \operatorname{AIL}$	6.71	25.1
	$2 \text{ AIN} + 14 \text{ H}_2$		
153	$3 \operatorname{Ca}(\operatorname{AIH}_4)_2 + 6 \operatorname{L1NH}_2 \rightarrow 3 \operatorname{CaH}_2 + 3 \operatorname{AIL1} + 3 \operatorname{AIN}$	6.37	10.1
	$+ L1N_3 + 2 L1H + 14 H_2$		
154	$4 \operatorname{Ca}(\operatorname{AIH}_4)_2 + 2 \operatorname{LINH}_2 \rightarrow 3 \operatorname{CaH}_2 + \operatorname{CaLI}_2 + 2 \operatorname{AIN} + 6 \operatorname{AI}_+ 15 \operatorname{H}_2$	6.67	10.8
	$\frac{0 \text{ AI} + 13 \text{ H}_2}{4 \text{ Co}(\text{A} \text{H}) + 2 \text{ LiNH}} \rightarrow 2 \text{ CoH} + \text{CoLi} + 2 \text{ A} \text{N} + \frac{1}{2} \text{ A} \text{A} \text{A} \text{A} \text{A} \text{A} \text{A} \text{A} $		
155	$4 \operatorname{Ca}(\operatorname{AIH}_4)_2 + 2 \operatorname{LINH}_2 \rightarrow 3 \operatorname{CaH}_2 + \operatorname{CaL}_1_2 + 2 \operatorname{AIN} + 6 \operatorname{AIH}_4 + 6 \operatorname{H}_4$	2.67	10.3
	Beactions including Sc		
156	ScH ₂ + 3 Δ] \rightarrow Δ] ₂ Sc + H ₂	1 58	19.6
157	$\frac{\text{ScH}_2 + 3 \text{ A}^2}{\text{ScH}_2 + 2 \text{ Si} \rightarrow \text{ScSi}_2 + \text{H}_2}$	1.95	95.5
158	$\frac{\operatorname{ScH}_2 + 2 \operatorname{Sl} \rightarrow \operatorname{ScSH}_2 + \operatorname{H}_2}{\operatorname{ScH}_2 + 2 \operatorname{Al}_2 \rightarrow \operatorname{Al}_2 \operatorname{Sc}_2 + \operatorname{H}_2}$	2.00	57.9
159	$\frac{\text{ScH}_2 + 2i}{\text{ScH}_2 + \text{Si} \rightarrow \text{ScSi} + \text{H}_2}$	2.68	39.8
160	$\frac{\text{ScH}_2 + \text{SL} \rightarrow \text{ScSL} + \text{H}_2}{\text{ScH}_2 + \text{Al} \rightarrow \text{AlSc} + \text{H}_2}$	2.00	111.1
161	$5 \text{ ScH}_2 + 3 \text{ Si} \rightarrow \text{Sc}_5 \text{Si}_2 + 5 \text{ H}_2$	3.16	81.9
162	$2 \operatorname{ScH}_2 + \operatorname{S} \operatorname{Sr} + \operatorname{S} \operatorname{Sc}_3 + \operatorname{S} \operatorname{H}_2$ $2 \operatorname{ScH}_2 + \operatorname{Al} \to \operatorname{AlSc}_2 + \operatorname{2} \operatorname{H}_2$	3 33	148.0
163	$\frac{2 \operatorname{ScH}_2 + \operatorname{H}_2 + \operatorname{H}_2}{\operatorname{ScH}_2 + \operatorname{Sc}_2 + \operatorname{H}_2}$	4 29	200.0
164	$\frac{\text{ScH}_2 + \text{Sc} + \text{H}_2}{\text{ScH}_2 + \text{LiNH}_2 \rightarrow \text{ScN} + \text{LiH} + 1.5 \text{ H}_2}$	4 32	-43.8
165	$\frac{1}{2} \operatorname{ScH}_2 + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{Li}_2 \operatorname{ScN}_2 + \operatorname{ScN}_2 + 5 \operatorname{H}_2$	6.19	11.3
166	$\frac{1}{2} \operatorname{ScH}_2 + 2 \operatorname{LiBH}_4 \rightarrow \operatorname{ScB}_2 + 2 \operatorname{LiH}_4 + 4 \operatorname{H}_2$	8.91	49.7
167	$ScH_2 + 12 LiBH_4 \rightarrow ScB_{12} + 12 LiH + 19 H_2$	12.42	74.1
168	$2 \operatorname{ScH}_2 + \operatorname{Al} + 2 \operatorname{Si} \rightarrow \operatorname{AlSc}_2 \operatorname{Si}_2 + 2 \operatorname{H}_2$	2.28	28.9
169	$2 \operatorname{ScH}_2 + \operatorname{AlH}_3 + 2 \operatorname{Si} \rightarrow \operatorname{AlSc}_2 \operatorname{Si}_2 + 3.5 \operatorname{H}_2$	3.92	21.3
	Reactions including Ti		
170	$TiH_2 \rightarrow Ti + H_2$	4.04	142.7
1.7.1	$TiH_2 + LiBH_4 \rightarrow LiH + TiB + 2.5 H_2$	7 .02	162.0 (o)
171	$(TiB - SG \cdot F4 3m)$	7.03	155.6(b)
	$TiH_2 + LiBH_4 \rightarrow LiH + TiB + 2.5 H_2$		437(0)
172	(TiB - SG: Pnma)	7.03	37.2 (h)
1.50		0.10	22.2 (0)
173	$T_1H_2 + 2 L_1BH_4 \rightarrow 2 L_1H + T_1B_2 + 4 H_2$	8.63	14.1 (h)
174	$TiH_2 + Si \rightarrow TiSi + H_2$	2.59	-0.1

175	$TiH_2 + 2 Si \rightarrow TiSi_2 + H_2$	1.90	-6.2
176	$5 \operatorname{TiH}_2 + 3 \operatorname{Si} \rightarrow \operatorname{Ti}_5 \operatorname{Si}_3 + 5 \operatorname{H}_2$	3.02	28.4
177	$5 \operatorname{TiH}_2 + 4 \operatorname{Si} \rightarrow \operatorname{Ti}_5 \operatorname{Si}_4 + 5 \operatorname{H}_2$	2.79	10.6
178	$TiH_2 + Al \rightarrow AlTi + H_2$	2.62	63.3
170	$TiH_2 + 2 Al \rightarrow Al_2Ti + H_2$	1.04	
1/9	(Al ₂ Ti – SG: Cmmm)	1.94	18.5
190	$TiH_2 + 2 Al \rightarrow Al_2Ti + H_2$	1.04	
180	$(Al_2Ti - SG: I4_1/amd)$	1.94	17.2
181	$TiH_2 + 3 Al \rightarrow Al_3Ti + H_2$	1.54	-11.9
182	$3 \operatorname{TiH}_2 + \operatorname{Al} \rightarrow \operatorname{AlTi}_3 + \operatorname{H}_2$	1.14	106.5
183	$TiH_2 + LiNH_2 \rightarrow LiH + TiN + 2 H_2$	5.53	-46.4
104	$2 \operatorname{TiH}_2 + \operatorname{LiNH}_2 \rightarrow \operatorname{LiH} + \operatorname{Ti}_2 N + 2.5 \operatorname{H}_2$	4 1 1	
184	$(Ti_2N - SG: I4_1/amd)$	4.11	11.7
105	$2 \operatorname{TiH}_2 + \operatorname{LiNH}_2 \rightarrow \operatorname{LiH} + \operatorname{Ti}_2 N + 2.5 \operatorname{H}_2$	4 1 1	
185	$(Ti_2N - SG: P4_2/mnm)$	4.11	9.2
186	$3 \operatorname{TiH}_2 + \operatorname{Al} + \operatorname{C} \rightarrow \operatorname{Ti}_3 \operatorname{AlC} + 3 \operatorname{H}_2$	3.21	50.1
187	$3 \operatorname{TiH}_2 + \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{LiH} + \operatorname{Ti}_3 \operatorname{AlN} + 3.5 \operatorname{H}_2$	3.53	26.1
188	$3 \operatorname{TiH}_2 + 2 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{AlLi} + \operatorname{Ti}_3 \operatorname{AlN} + 4 \operatorname{H}_2$	3.56	34.1
189	$3 \operatorname{TiH}_2 + 3 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_3\operatorname{Li} + \operatorname{Ti}_3\operatorname{AlN} + 4 \operatorname{H}_2$	3.18	-56.5
190	$3 \operatorname{TiH}_2 + 2 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{AlLi}_3\operatorname{N}_2 + \operatorname{Ti}_3\operatorname{AlN} + 6 \operatorname{H}_2$	4.44	10.0
101	$4 \operatorname{TiH}_2 + 3 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_2\operatorname{Ti} + \operatorname{Ti}_3\operatorname{AlN} + \operatorname{LiH} + 5$	2.22	
191	H_2 (Al ₂ Ti – SG: Cmmm)	3.32	-43.6
102	$4 \operatorname{TiH}_2 + 3 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_2\operatorname{Ti} + \operatorname{Ti}_3\operatorname{AlN} + \operatorname{LiH} + 5$	2 22	
192	H_2 (Al ₂ Ti – SG: I4 ₁ /amd)	5.52	-43.8
102	9 TiH ₂ + 5 Al + 3 LiNH ₂ \rightarrow Al ₂ Li ₃ + 3 Ti ₃ AlN + 12	2 71	
195	H_2	5.71	35.6
10/	$27 \operatorname{TiH}_2 + 13 \operatorname{Al} + 9 \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_4 \operatorname{Li}_9 + 9 \operatorname{Ti}_3 \operatorname{AlN} +$	3.81	
194	36 H ₂	5.81	38.0
195	$2 \operatorname{TiH}_2 + \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{LiH} + \operatorname{Ti}_2 \operatorname{AlN} + 2.5 \operatorname{H}_2$	3.37	-19.3
196	$2 \operatorname{TiH}_2 + 2 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{AlLi} + \operatorname{Ti}_2 \operatorname{AlN} + 3 \operatorname{H}_2$	3.42	-1.1
197	$2 \operatorname{TiH}_2 + 3 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_3 \operatorname{Li} + \operatorname{Ti}_2 \operatorname{AlN} + 3 \operatorname{H}_2$	2.97	-121.7
198	$2 \operatorname{TiH}_2 + 2 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{AlLi}_3 \operatorname{N}_2 + \operatorname{Ti}_2 \operatorname{AlN} + 5 \operatorname{H}_2$	4.53	-15.9
100	$3 \operatorname{TiH}_2 + 3 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_2\operatorname{Ti} + \operatorname{Ti}_2\operatorname{AlN} + \operatorname{LiH} + 4$	3 18	
199	H_2 (Al ₂ Ti – SG: Cmmm)	5.10	-89.3
200	$3 \operatorname{TiH}_2 + 3 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_2\operatorname{Ti} + \operatorname{Ti}_2\operatorname{AlN} + \operatorname{LiH} + 4$	3 18	
200	H_2 (Al ₂ Ti – SG: I4 ₁ /amd)	5.10	-89.6
201	$6 \operatorname{TiH}_2 + 5 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_2\operatorname{Li}_3 + 3 \operatorname{Ti}_2\operatorname{AlN} + 9 \operatorname{H}_2$	3.61	1.0
202	$18 \operatorname{TiH}_2 + 13 \operatorname{Al} + 9 \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_4 \operatorname{Li}_9 + 9 \operatorname{Ti}_2 \operatorname{AlN} +$	3 71	
202	27 H ₂	5.74	4.1
203	$4 \operatorname{TiH}_2 + \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{LiH} + \operatorname{Ti}_4 \operatorname{AlN}_3 + 5.5 \operatorname{H}_2$	3.75	-37.7
204	$4 \operatorname{TiH}_2 + 4 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{AlLi} + \operatorname{Ti}_4 \operatorname{AlN}_3 + 7 \operatorname{H}_2$	3.75	-10.3
205	$4 \operatorname{TiH}_2 + 10 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{Al}_3 \operatorname{Li} + \operatorname{Ti}_4 \operatorname{AlN}_3 + 7$	262	
203	H ₂	2.02	-12.7
206	$4 \operatorname{TiH}_2 + 4 \operatorname{Al} + 5 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{AlLi} + \operatorname{AlLi}_3 \operatorname{N}_2 +$	A 30	
200	$Ti_4AIN_3 + 9 H_2$	4.30	-16.5

207	$5 \operatorname{TiH}_2 + 3 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_2\operatorname{Ti} + \operatorname{Ti}_4\operatorname{AlN}_3 + 3 \operatorname{LiH}$	2 70	
207	$+ 6.5 \text{ H}_2 (\text{Al}_2\text{Ti} - \text{SG: Cmmm})$	3.28	-29.0
200	$5 \operatorname{TiH}_2 + 3 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_2\operatorname{Ti} + \operatorname{Ti}_4\operatorname{AlN}_3 + 3 \operatorname{LiH}$	2 20	
208	$+ 6.5 \text{ H}_2 \text{ (Al}_2\text{Ti} - \text{SG: I4}_1/\text{amd})$	3.28	-29.2
209	$4 \operatorname{TiH}_2 + 3 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_2\operatorname{Li}_3 + \operatorname{Ti}_4\operatorname{AlN}_3 + 7 \operatorname{H}_2$	4.04	-7.7
210	$12 \operatorname{TiH}_2 + 7 \operatorname{Al} + 9 \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_4 \operatorname{Li}_9 + 3 \operatorname{Ti}_4 \operatorname{AlN}_3 +$	4.26	
210	21 H ₂	4.20	-3.6
211	$TiH \rightarrow Ti + 0.5 H_2$	2.06	139.7
212	$TiH + LiBH_4 \rightarrow LiH + TiB + 2 H_2$	C 71	166.1 (o)
212	$(TiB - SG; F\overline{4} 3m)$	5.71	158.0 (h)
	$TiH + LiBH_4 \rightarrow LiH + TiB + 2 H_2$	5.51	18.2 (o)
213	(TiB – SG: Pnma)	5.71	10.1 (h)
014		7 (2)	4.5 (o)
214	$11H + 2 L1BH_4 \rightarrow 2 L1H + 11B_2 + 3.5 H_2$	1.63	-4.7 (h)
215	$TiH + Si \rightarrow TiSi + 0.5 H_2$	1.31	-145.8
216	$TiH + 2 Si \rightarrow TiSi_2 + 0.5 H_2$	0.96	-158.0
217	$5 \operatorname{TiH} + 3 \operatorname{Si} \rightarrow \operatorname{Ti}_5 \operatorname{Si}_3 + 2.5 \operatorname{H}_2$	1.53	-88.9
218	$5 \operatorname{TiH} + 4 \operatorname{Si} \rightarrow \operatorname{Ti}_5 \operatorname{Si}_4 + 2.5 \operatorname{H}_2$	1.41	-124.5
219	$TiH + Al \rightarrow AlTi + 0.5 H_2$	1.33	-19.2
220	$TiH + 2 Al \rightarrow Al_2Ti + 0.5 H_2$	0.00	
220	$(Al_2Ti - SG: Cmmm)$	0.98	-108.6
221	$TiH + 2 Al \rightarrow Al_2Ti + 0.5 H_2$	0.00	
221	$(Al_2Ti - SG: I4_1/amd)$	0.98	-111.3
222	$TiH + 3 Al \rightarrow Al_3Ti + 0.5 H_2$	0.78	-169.4
223	$3 \operatorname{TiH} + \operatorname{Al} \rightarrow \operatorname{AlTi}_3 + 1.5 \operatorname{H}_2$	1.74	67.2
224	$TiH + LiNH_2 \rightarrow LiH + TiN + H_2$	2.81	-142.4
225	$2 \operatorname{TiH} + \operatorname{LiNH}_2 \rightarrow \operatorname{LiH} + \operatorname{Ti}_2 N + 1.5 \operatorname{H}_2$	2.50	
225	$(Ti_2N - SG: I4_1/amd)$	2.50	-77.6
226	$2 \operatorname{TiH} + \operatorname{LiNH}_2 \rightarrow \operatorname{LiH} + \operatorname{Ti}_2 N + 1.5 \operatorname{H}_2$	2 50	
220	$(Ti_2N - SG: P4_2/mnm)$	2.30	-81.9
227	$3 \operatorname{TiH} + \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{LiH} + \operatorname{Ti}_3 \operatorname{AlN} + 2 \operatorname{H}_2$	2.05	-63.7
228	$3 \operatorname{TiH} + 2 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{AlLi} + \operatorname{Ti}_3 \operatorname{AlN} + 2.5 \operatorname{H}_2$	2.25	-32.9
229	$3 \operatorname{TiH} + 3 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_3\operatorname{Li} + \operatorname{Ti}_3\operatorname{AlN} + 2.5 \operatorname{H}_2$	2.01	-177.7
230	$3 \operatorname{TiH} + 2 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{AlLi}_3 \operatorname{N}_2 + \operatorname{Ti}_3 \operatorname{AlN} + 4.5$	3 37	
230	H ₂	5.57	-35.3
231	$4 \operatorname{TiH} + 3 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_2 \operatorname{Ti} + \operatorname{Ti}_3 \operatorname{AlN} + \operatorname{LiH} + 3$	2.02	
231	H_2 (Al ₂ Ti – SG: Cmmm)	2.02	-169.7
232	$4 \operatorname{TiH} + 3 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_2 \operatorname{Ti} + \operatorname{Ti}_3 \operatorname{AlN} + \operatorname{LiH} + 3$	2.02	
232	H_2 (Al ₂ Ti – SG: I4 ₁ /amd)	2.02	-170.1
233	9 TiH + 5 Al + 3 LiNH ₂ \rightarrow Al ₂ Li ₃ + 3 Ti ₃ AlN + 7.5	2 35	
235	H ₂	2.55	-30.5
234	$27 \text{ TiH} + 13 \text{ Al} + 9 \text{ LiNH}_2 \rightarrow \text{Al}_4\text{Li}_9 + 9 \text{ Ti}_3\text{AlN} +$	2 42	
237	22.5 H ₂	2.72	-26.7
235	$2 \operatorname{TiH} + \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{LiH} + \operatorname{Ti}_2 \operatorname{AlN} + 1.5 \operatorname{H}_2$	2.05	-129.3
236	$2 \operatorname{TiH} + 2 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{AlLi} + \operatorname{Ti}_2 \operatorname{AlN} + 2 \operatorname{H}_2$	2.31	-74.4

Electronic Supplementary Material for PCCP	
This journal is © The Owner Societies 2007	

237	$2 \operatorname{TiH} + 3 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_3 \operatorname{Li} + \operatorname{Ti}_2 \operatorname{AlN} + 2 \operatorname{H}_2$	2.00	-255.4
238	$2 \operatorname{TiH} + 2 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{AlLi}_3 \operatorname{N}_2 + \operatorname{Ti}_2 \operatorname{AlN} + 4 \operatorname{H}_2$	3.65	-56.3
220	$3 \text{ TiH} + 3 \text{ Al} + \text{LiNH}_2 \rightarrow \text{Al}_2\text{Ti} + \text{Ti}_2\text{AlN} + \text{LiH} + 2.5$	2.01	
239	H_2 (Al ₂ Ti – SG: Cmmm)	2.01	-230.2
240	$3 \operatorname{TiH} + 3 \operatorname{Al} + \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_2\operatorname{Ti} + \operatorname{Ti}_2\operatorname{AlN} + \operatorname{LiH} + 2.5$	2.01	
240	H_2 (Al ₂ Ti – SG: I4 ₁ /amd)	2.01	-230.8
241	$6 \operatorname{TiH} + 5 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_2\operatorname{Li}_3 + 3 \operatorname{Ti}_2\operatorname{AlN} + 6 \operatorname{H}_2$	2.43	-71.4
242	$18 \operatorname{TiH} + 13 \operatorname{Al} + 9 \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_4 \operatorname{Li}_9 + 9 \operatorname{Ti}_2 \operatorname{AlN} + 18$	2 52	
242	H_2	2.32	-66.6
243	$4 \operatorname{TiH} + \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{LiH} + \operatorname{Ti}_4 \operatorname{AlN}_3 + 3.5 \operatorname{H}_2$	2.42	-142.4
244	$4 \operatorname{TiH} + 4 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{AlLi} + \operatorname{Ti}_4 \operatorname{AlN}_3 + 5 \operatorname{H}_2$	2.71	-72.7
245	$4 \operatorname{TiH} + 10 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow 3 \operatorname{Al}_3 \operatorname{Li} + \operatorname{Ti}_4 \operatorname{AlN}_3 + 5$	1.80	
243	H_2	1.09	-76.0
246	$4 \operatorname{TiH} + 4 \operatorname{Al} + 5 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{AlLi} + \operatorname{AlLi}_3 \operatorname{N}_2 +$	3 37	
240	$Ti_4AlN_3 + 7 H_2$	5.57	-62.8
247	5 TiH + 3 Al + 3 LiNH ₂ \rightarrow Al ₂ Ti + Ti ₄ AlN ₃ + 3 LiH	2.05	
247	$+ 4 H_2 (Al_2Ti - SG: Cmmm)$	2.05	-138.2
248	5 TiH + 3 Al + 3 LiNH ₂ \rightarrow Al ₂ Ti + Ti ₄ AlN ₃ + 3 LiH	2.05	
240	$+ 4 H_2 (Al_2Ti - SG: I4_1/amd)$	2.05	-138.5
249	$4 \operatorname{TiH} + 3 \operatorname{Al} + 3 \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_2\operatorname{Li}_3 + \operatorname{Ti}_4\operatorname{AlN}_3 + 5 \operatorname{H}_2$	2.92	-69.0
250	$12 \operatorname{TiH} + 7 \operatorname{Al} + 9 \operatorname{LiNH}_2 \rightarrow \operatorname{Al}_4 \operatorname{Li}_9 + 3 \operatorname{Ti}_4 \operatorname{AlN}_3 + 15$	3.08	
230	H ₂	5.08	-63.3
	Reactions including V		
251	$VH_2 \rightarrow V + H_2$	3.81	63.3
252	$2 \text{ VH}_2 \rightarrow \text{V}_2\text{H} + 1.5 \text{ H}_2$	2.86	
232	$(V_2H - SG: I4_1/amd)$	2.00	57.4
253	$2 \text{ VH}_2 \rightarrow \text{V}_2\text{H} + 1.5 \text{ H}_2$	2.86	_
200	$(V_2H - SG: Cm)$	2.00	57.2
254	$VH_2 + 3 AI \rightarrow Al_3V + H_2$	1.51	-47.0
255	$VH_2 + 10 \text{ Al} \rightarrow Al_{10}V + H_2$	0.62	-48.6
256	$3 \text{ VH}_2 + \text{Al} \rightarrow \text{AlV}_3 + 3 \text{ H}_2$	3.25	46.6
257	$VH_2 + 2 Si \rightarrow VSi_2 + H_2$	1.85	-60.9
258	$3 \text{ VH}_2 + \text{Si} \rightarrow \text{V}_3 \text{Si} + 3 \text{ H}_2$	3.23	5.2
259	$6 \text{ VH}_2 + 5 \text{ Si} \rightarrow \text{V}_6 \text{Si}_5 + 6 \text{ H}_2$	2.64	-25.3
260	$VH_2 + LiNH_2 \rightarrow VN + LiH + 1.5 H_2$	3.98	-5.4
261	$2 \text{ VH}_2 + 3 \text{ LiNH}_2 \rightarrow 2 \text{ VN} + \text{Li}_3\text{N} + 5 \text{ H}_2$	5.77	40.5
262	$4 \text{ VH}_2 + 7 \text{ LiNH}_2 \rightarrow \text{Li}_7\text{N}_4\text{V} + 3 \text{ VN} + 11 \text{ H}_2$	5 95	
202	$(Li_7N_4V - SG: P43n)$	5.75	14.3
2(2	$4 \text{ VH}_2 + 7 \text{ LiNH}_2 \rightarrow \text{Li}_7\text{N}_4\text{V} + 3 \text{ VN} + 11 \text{ H}_2$	5.05	
263	$(Li_7N_4V - SG: Pa\overline{3})$	5.95	14.1
264	$4 \text{ VH}_2 + 7 \text{ LiNH}_2 \rightarrow \text{Li}_7\text{N}_4\text{V} + 3 \text{ VN} + 11 \text{ H}_2$	5.05	
264	$(\text{Li}_7\text{N}_4\text{V} - \text{SG}: \text{P4}_2/\text{nmc})$	5.95	14.8
2(5		(7)	11.6 (o)
265	$VH_2 + L1BH_4 \rightarrow VB + L1H + 2.5 H_2$	6./4	5.1 (h)
266	$VH_2 + 2 LiBH_4 \rightarrow VB_2 + 2 LiH + 4 H_2$	8.35	25.5 (o)

			17.4 (h)
267	$2 \text{ VH}_2 + 3 \text{ LiBH}_4 \rightarrow \text{V}_2\text{B}_3 + 3 \text{ LiH} + 6.5 \text{ H}_2$	7.65	19.0 (o) 11.5 (h)
268	$3 \text{ VH}_2 + 2 \text{ LiBH}_4 \rightarrow \text{V}_3\text{B}_2 + 2 \text{ LiH} + 6 \text{ H}_2$	5.98	16.3 (o) 10.9 (h)
269	$VH_2 + 4 \operatorname{LiNH}_2 + 3 \operatorname{LiH} \rightarrow \operatorname{Li}_7 \operatorname{N}_4 V + 6.5 \operatorname{H}_2 (\operatorname{Li}_7 \operatorname{N}_4 V)$ $- \operatorname{SG:} P\overline{4} \operatorname{3n}$	7.77	28.0
270	$VH_2 + 4 \operatorname{LiNH}_2 + 3 \operatorname{LiH} \rightarrow \operatorname{Li}_7 \operatorname{N}_4 V + 6.5 \operatorname{H}_2 (\operatorname{Li}_7 \operatorname{N}_4 V)$ $- SG: \operatorname{Pa}\overline{3})$	7.77	27.5
271	$VH_2 + 4 \text{ LiNH}_2 + 3 \text{ LiH} \rightarrow \text{Li}_7\text{N}_4\text{V} + 6.5 \text{ H}_2 (\text{Li}_7\text{N}_4\text{V} - \text{SG: P4}_2/\text{nmc})$	7.77	28.7
272	$3 \text{ VH}_2 + 2 \text{ ScH}_2 + 4 \text{ Si} \rightarrow \text{Sc}_2\text{V}_3\text{Si}_4 + 5 \text{ H}_2$	3.17	-7.7
273	$VH_2 + 3 CaH_2 + 3 LiNH_2 \rightarrow Ca_3N_3V + 3 LiH + 5.5$ H_2	4.47	35.0
274	$VH_2 + 2 CaH_2 + 3 LiNH_2 \rightarrow Ca_2N_3V + 3 LiH + 4.5$ H ₂	4.40	12.3
	Using V ₂ H with SG: I4 ₁ /amd		
275	$V_2H \rightarrow 2 V + 0.5 H_2$	1.94	80.9
276	$V_2H + 6 Al \rightarrow 2 Al_3V + 0.5 H_2$	0.47	-360.1
277	$V_2H + 20 \text{ Al} \rightarrow 2 \text{ Al}_{10}V + 0.5 \text{ H}_2$	0.17	-366.7
278	$3 \text{ V}_2\text{H} + 2 \text{ Al} \rightarrow 2 \text{ AlV}_3 + 1.5 \text{ H}_2$	1.44	14.0
279	$V_2H + 4$ Si $\rightarrow 2$ VSi ₂ + 0.5 H ₂	0.61	-416.0
280	$3 \text{ V}_2\text{H} + 2 \text{ Si} \rightarrow 2 \text{ V}_3\text{Si} + 1.5 \text{ H}_2$	1.43	-151.3
281	$3 \text{ V}_2\text{H} + 5 \text{ Si} \rightarrow \text{V}_6\text{Si}_5 + 1.5 \text{ H}_2$	1.02	-273.5
282	$V_2H + 2 \text{ LiNH}_2 \rightarrow 2 \text{ VN} + 2 \text{ LiH} + 1.5 \text{ H}_2$	3.09	-68.2
283	$V_2H + 3 \text{ LiNH}_2 \rightarrow 2 \text{ VN} + \text{Li}_3N + 3.5 \text{ H}_2$	5.84	33.3
284	$\frac{1}{4} \overline{V_2H} + 14 \operatorname{LiNH}_2 \rightarrow 2 \operatorname{Li}_7 N_4 V + 6 \operatorname{VN} + 16 \operatorname{H}_2$ $(\operatorname{Li}_7 N_4 V - \operatorname{SG}: \operatorname{P}\overline{4} \operatorname{3n})$	6.09	-1.8
285	$4 V_2H + 14 LiNH_2 \rightarrow 2 Li_7N_4V + 6 VN + 16 H_2$ (Li ₇ N ₄ V - SG: Pa $\overline{3}$)	6.09	-2.2
286	$4 V_2H + 14 LiNH_2 \rightarrow 2 Li_7N_4V + 6 VN + 16 H_2$ (Li ₇ N ₄ V - SG: P4 ₂ /nmc)	6.09	-1.2
287	$V_2H + 2 \text{ LiBH}_4 \rightarrow 2 \text{ VB} + 2 \text{ LiH} + 3.5 \text{ H}_2$	7.39	-8.1 (o) -17.4 (h)
288	$V_2H + 3 \text{ LiBH}_4 \rightarrow V_2B_3 + 3 \text{ LiH} + 5 \text{ H}_2$	8.59	341.7 (o) 331.9 (h)
289	$V_2H + 4 \text{ LiBH}_4 \rightarrow 2 \text{ VB}_2 + 4 \text{ LiH} + 6.5 \text{ H}_2$	9.42	-496.1 (o) -506.1 (h)
290	$3 \text{ V}_2\text{H} + 4 \text{ LiBH}_4 \rightarrow 2 \text{ V}_3\text{B}_2 + 4 \text{ LiH} + 7.5 \text{ H}_2$	6.22	-8.4 (o) -17.0 (h)
291	$V_2H + 8 \operatorname{LiNH}_2 + 6 \operatorname{LiH} \rightarrow 2 \operatorname{Li}_7 N_4 V + 11.5 \operatorname{H}_2$ $(\operatorname{Li}_7 N_4 V - \operatorname{SG}: \operatorname{P}\overline{4} \operatorname{3n})$	8.18	24.2
292	$V_{2}H + 8 \operatorname{LiNH}_{2} + 6 \operatorname{LiH} \rightarrow 2 \operatorname{Li}_{7}N_{4}V + 11.5 \operatorname{H}_{2}$ $(\operatorname{Li}_{7}N_{4}V - SG: \operatorname{Pa}_{\overline{3}})$	8.18	23.6

202	$V_2H + 8 \text{ LiNH}_2 + 6 \text{ LiH} \rightarrow 2 \text{ Li}_7N_4V + 11.5 \text{ H}_2$	0 10	
293	$(Li_7N_4V - SG: P4_2/nmc)$	0.10	25.0
294	$3 \text{ V}_2\text{H} + 4 \text{ ScH}_2 + 8 \text{ Si} \rightarrow 2 \text{ Sc}_2\text{V}_3\text{Si}_4 + 5.5 \text{ H}_2$	2.91	-61.1
	Using V ₂ H with SG: Cm		
295	$V_2H \rightarrow 2 V + 0.5 H_2$	1.94	81.6
296	$V_2H + 6 Al \rightarrow 2 Al_3V + 0.5 H_2$	0.47	-359.5
297	$V_2H + 20 \text{ Al} \rightarrow 2 \text{ Al}_{10}V + 0.5 \text{ H}_2$	1.70	-366.1
298	$3 V_2H + 2 AI \rightarrow 2 AIV_3 + 1.5 H_2$	1.44	14.6
299	$V_2H + 4$ Si $\rightarrow 2$ VSi ₂ + 0.5 H ₂	0.61	-415.4
300	$3 V_2H + 2 Si \rightarrow 2 V_3Si + 1.5 H_2$	1.43	-150.7
301	$3 V_2H + 5 Si \rightarrow V_6Si_5 + 1.5 H_2$	1.02	-272.8
302	$V_2H + 2 \text{ LiNH}_2 \rightarrow 2 \text{ VN} + 2 \text{ LiH} + 1.5 \text{ H}_2$	3.09	-68.0
303	$V_2H + 3 \text{ LiNH}_2 \rightarrow 2 \text{ VN} + \text{Li}_3N + 3.5 \text{ H}_2$	5.84	33.4
204	$4 \text{ V}_2\text{H} + 14 \text{ LiNH}_2 \rightarrow 2 \text{ Li}_7\text{N}_4\text{V} + 6 \text{ VN} + 16 \text{ H}_2$	6.00	
304	$(Li_7N_4V - SG; P\overline{4}3n)$	6.09	-1.7
	$4 \text{ V}_2\text{H} + 14 \text{ LiNH}_2 \rightarrow 2 \text{ Li}_7\text{N}_4\text{V} + 6 \text{ VN} + 16 \text{ H}_2$		
305	$(\text{Li}_7\text{N}_4\text{V} - \text{SG}^2\text{Pa}_3)$	6.09	-21
	$4 \text{ V}_{2}\text{H} + 14 \text{ J}_{1}\text{N}\text{H}_{2} \rightarrow 2 \text{ J}_{12}\text{N}_{4}\text{V} + 6 \text{ V}\text{N} + 16 \text{ H}_{2}$		-2.1
306	$(\text{Li}_7\text{N}_4\text{V} - \text{SG}, \text{P4}_2/\text{nmc})$	6.09	-12
	$V_2H + 2 \text{ LiBH}_4 \rightarrow 2 \text{ VB} + 2 \text{ LiH} + 3.5 \text{ H}_2$		-80(0)
307		7.39	-17.7 (h)
200	$V_2H + 3 \text{ LiBH}_4 \rightarrow V_2B_3 + 3 \text{ LiH} + 5 \text{ H}_2$	0.50	341.7 (o)
308		8.39	332.0 (h)
300	$V_2H + 4 \text{ LiBH}_4 \rightarrow 2 \text{ VB}_2 + 4 \text{ LiH} + 6.5 \text{ H}_2$	9.42	-496.1 (o)
509		9.42	-506.0 (h)
310	$3 \text{ V}_2\text{H} + 4 \text{ LiBH}_4 \rightarrow 2 \text{ V}_3\text{B}_2 + 4 \text{ LiH} + 7.5 \text{ H}_2$	6 22	-8.3 (o)
010			-16.9 (h)
311	$V_2H + 8 L_1NH_2 + 6 L_1H \rightarrow 2 L_{17}N_4V + 11.5 H_2$	8 18	24.2
	$(\mathrm{Li}_7\mathrm{N}_4\mathrm{V} - \mathrm{SG}:\mathrm{P4}\mathrm{3n})$		
312	$V_2H + 8 \operatorname{LiNH}_2 + 6 \operatorname{LiH} \rightarrow 2 \operatorname{Li}_7 N_4 V + 11.5 \operatorname{H}_2$	8 18	23.6
512	$(\text{Li}_7\text{N}_4\text{V} - \text{SG: Pa}\overline{3})$	0.10	25.0
212	$V_2H + 8 \text{ LiNH}_2 + 6 \text{ LiH} \rightarrow 2 \text{ Li}_7N_4V + 11.5 \text{ H}_2$	<u> </u>	25.0
515	$(Li_7N_4V - SG: P4_2/nmc)$	0.10	23.0
314	$3 \text{ V}_2\text{H} + 4 \text{ ScH}_2 + 8 \text{ Si} \rightarrow 2 \text{ Sc}_2\text{V}_3\text{Si}_4 + 5.5 \text{ H}_2$	2.91	-60.9
	Reactions including C		
315	$ScH_2 + C \rightarrow ScC + H_2$	3.42	163.6
316	$2 \operatorname{ScH}_2 + \operatorname{C} \to \operatorname{Sc}_2 \operatorname{C} + 2 \operatorname{H}_2$	3.81	134.4
317	$2 \operatorname{ScH}_2 + 3 \operatorname{C} \to \operatorname{Sc}_2\operatorname{C}_3 + 2 \operatorname{H}_2$	3.10	123.6
318	$3 \operatorname{ScH}_2 + 4 \operatorname{C} \rightarrow \operatorname{Sc}_3\operatorname{C}_4 + 3 \operatorname{H}_2$	3.20	99.0
319	$4 \operatorname{ScH}_2 + 3 \operatorname{C} \to \operatorname{Sc}_4 \operatorname{C}_3 + 4 \operatorname{H}_2$	3.60	109.8
320	$MgH_2 + 2 C \rightarrow MgC_2 + H_2$	4.00	173.3
321	$2 \text{ MgH}_2 + 3 \text{ C} \rightarrow \text{Mg}_2\text{C}_3 + 2 \text{ H}_2$	4.55	93.2
322	$LiNH_2 + C \rightarrow LiCN + H_2$	5.76	119.6
323	$LiBH_4 + C \rightarrow LiBC + 2 H_2$	11.95	43.6(o)

			35.3(h)
324	$2 \text{ LiNH}_2 + \text{C} \rightarrow \text{Li}_2\text{CN}_2 + 2 \text{ H}_2$	6.97	31.4
325	$3 \operatorname{ScH}_2 + \operatorname{Al} + \operatorname{C} \rightarrow \operatorname{Sc}_3 \operatorname{AlC} + 3 \operatorname{H}_2$	3.36	101.1
326	$ScH_2 + 3 Al + 3 C \rightarrow ScAl_3C_3 + H_2$	1.23	-68.5
327	$CaH_2 + 2 LiNH_2 + C \rightarrow CaCN_2 + 2 LiH + 2 H_2$	4.03	24.6
328	$MgH_2 + 2 LiNH_2 + C \rightarrow MgCN_2 + 2 LiH + 2 H_2$	4.79	126.5
329	$MgH_2 + 2 LiNH_2 + C \rightarrow Mg(NCN) + 2 LiH + 2 H_2$	4.79	23.8
330	$CaH_2 + 2 LiBH_4 + 2 C \rightarrow CaB_2C_2 + 2 LiH + 4 H_2$	7.35	59.7(o) 51.6(h)
331	$ScH_2 + 2 LiBH_4 + C \rightarrow ScB_2C + 2 LiH + 4 H_2$	7.86	52.9(o) 44.8(h)
332	$ScH_2 + 2 LiBH_4 + 2 C \rightarrow ScB_2C_2 + 2 LiH + 4 H_2$	7.04	52.4(o) 44.3(h)
333	$MgH_2 + 2 LiBH_4 + 2 C \rightarrow MgB_2C_2 + 2 LiH + 4 H_2$	8.59	55.3(o) 47.2(h)
334	$TiH_2 + C \rightarrow TiC + H_2$	3.26	-9.5
335	$2 \operatorname{TiH}_2 + C \to \operatorname{Ti}_2 C + 2 \operatorname{H}_2$	3.61	53.3
336	$8 \operatorname{TiH}_2 + 5 \operatorname{C} \to \operatorname{Ti}_8 \operatorname{C}_5 + 8 \operatorname{H}_2$	3.51	33.1
337	$3 \operatorname{TiH}_2 + \operatorname{Si} + 2 \operatorname{C} \rightarrow \operatorname{Ti}_3 \operatorname{SiC}_2 + 3 \operatorname{H}_2$	3.00	-12.0
338	$3 \operatorname{TiH}_2 + \operatorname{Al} + 2 \operatorname{C} \rightarrow \operatorname{Ti}_3 \operatorname{AlC}_2 + 3 \operatorname{H}_2$	3.48	-1.6
339	$TiH + C \rightarrow TiC + 0.5 H_2$	1.66	-164.6
340	$2 \operatorname{TiH} + C \rightarrow \operatorname{Ti}_2 C + H_2$	1.84	-39.1
341	$8 \operatorname{TiH} + 5 \operatorname{C} \rightarrow \operatorname{Ti}_8 \operatorname{C}_5 + 4 \operatorname{H}_2$	1.79	-79.5
342	$3 \operatorname{TiH} + \operatorname{Al} + \operatorname{C} \rightarrow \operatorname{Ti}_3 \operatorname{AlC} + 1.5 \operatorname{H}_2$	1.63	-45.4
343	$3 \operatorname{TiH} + \operatorname{Si} + 2 \operatorname{C} \rightarrow \operatorname{Ti}_3 \operatorname{SiC}_2 + 1.5 \operatorname{H}_2$	1.52	-169.7
344	$3 \operatorname{TiH} + \operatorname{Al} + 2 \operatorname{C} \rightarrow \operatorname{Ti}_3 \operatorname{AlC}_2 + 1.5 \operatorname{H}_2$	1.53	-148.9
345	$VH_2 + C \rightarrow VC + H_2$	3.10	-13.6
346	$2 \text{ VH}_2 + \text{C} \rightarrow \text{V}_2\text{C} + 2 \text{ H}_2$	3.42	-1.9
347	$6 \text{ VH}_2 + 5 \text{ C} \rightarrow \text{V}_6\text{C}_5 + 6 \text{ H}_2$	3.20	-30.8
348	$V_2H + C \rightarrow V_2C + 0.5 H_2 (V_2H - SG: I4_1/amd)$	1.58	-179.9
349	$V_2H + 2 C \rightarrow 2 VC + 0.5 H_2 (V_2H - SG: I4_1/amd)$	1.33	-226.8
350	$3 V_2H + 5 C \rightarrow V_6C_5 + 1.5 H_2 (V_2H - SG: I4_1/amd)$	1.40	-295.5
351	$V_2H + C \rightarrow V_2C + 0.5 H_2 (V_2H - SG: Cm)$	4.73	-179.3
352	$V_2H + 2 C \rightarrow 2 VC + 0.5 H_2 (V_2H - SG: Cm)$	1.33	-226.2
353	$3 V_2H + 5 C \rightarrow V_6C_5 + 1.5 H_2 (V_2H - SG: Cm)$	1.40	-294.9

Table S2: Enthalpy of formation at 0 K for the compounds studied at the energy cutoff of 425 eV. For any compound $\mathbf{A}_{\mathbf{x}}\mathbf{B}_{\mathbf{y}}$, the enthalpy of formation is defined as $\Delta H_f = E_{A_xB_y} - xE_A - yE_B$, where $E_{A_xB_y}$, E_A and E_B are the DFT calculated total energies of $\mathbf{A}_{\mathbf{x}}\mathbf{B}_{\mathbf{y}}$, \mathbf{A} and \mathbf{B} respectively.¹

Compound	Space Group	ΔH_f (kJ/mol)
Al ₁₀ V	$Fd\overline{3}m$	-111.91
Al ₁₂ Mg ₁₇	I 4 3m	-114.68
Al ₂ Ca	$Fd\overline{3}m$	-100.88
Al ₂ Ca ₃ Si ₂	Immm	-302.58
Al ₂ CaSi ₂	$P\overline{3}m1$	-157.98
Al ₂ Li ₃	$R\overline{3}m$	-102.49
Al ₂ Sc	$Fd\overline{3}mS$	-142.07
Al ₂ Ti	Cmmm	-124.14
Al ₂ Ti	I4 ₁ /amd	-125.46
Al ₃ Li	$Pm\overline{3}m$	-45.84
Al ₃ Sc	$Pm\overline{3}m$	-180.34
Al ₃ Ti	I4/mmm	-154.53
Al ₃ V	I4/mmm	-110.26
Al ₄ Li ₉	C2/m	-223.06
AlB ₂	P6/mmm	-13.34
AlH ₃	$R\overline{3}c$	-16.62
AlLi	$Fd\overline{3}m$	-40.27
AlLi ₃ N ₂	Ia 3	-530.27
AlLiSi	$F\overline{4}3m$	-71.29
AlMg ₄ Si ₆	C12/m1	110.69
AlN	P6 ₃ mc	-287.56
AlSc	$Pm\overline{3}m$	-88.87
AlSc ₂	P6 ₃ /mmc	-103.91
$AlSc_2Si_2$	P4/mbm	-342.00
AlTi	P4/mmm	-79.41
AlTi ₃	P6 ₃ /mmc	-108.66
AlV ₃	$Pm\overline{3}n$	-50.23

¹ Corrections to a number of typographical errors in this table were made to this table in July 2007. We greatly appreciate Prof. C. Ahn and Prof. D. Jenkins, who pointed out these errors. All calculations reported in our paper were performed with the data listed in this corrected table; the incorrect information for some entries of this table that appeared previously was not used in any of the calculated results reported in our paper.

Ca(AlH ₄) ₂	Pbca	-212.11
Ca ₂ HN	$Fd\overline{3}m$	-318.41
Ca ₂ LiSi ₃	Pnnm	-274.45
Ca ₂ N	$R\overline{3}m$	-215.91
Ca ₂ N ₃ V	C2/c	-718.74
Ca ₃ AlN ₃	$P2_1/c$	-727.36
Ca ₃ BN ₃	P4/mmm	-774.64
Ca ₃ N ₂	Ia 3	-405.47
Ca ₃ N ₃ V	Cmcm	-754.56
Ca ₅ Si ₃	I4/mcm	-352.76
CaB ₂ C ₂	$P\overline{4}2c$	-107.42
CaB ₂ C ₂	I4/mcm	-180.77
CaB ₆	$Pm\overline{3}m$	-291.60
CaCN ₂	$R\overline{3}mR$	-366.90
CaH ₂	Pnma	-173.15
CaLi ₂	P6 ₃ /mmc	-5.97
CaLiN	Pnma	-203.65
CaLiSi ₂	Pnma	-163.46
CaMgSi	Pnma	-134.22
CaMg ₂	P6 ₃ /mmc	-38.00
CaMg ₂ N ₂	$P\overline{3}m1$	-428.51
CaSi	Cmcm	-99.05
CaSi ₂	$R\overline{3}mH$	-113.42
Li ₁₂ Mg ₃ Si ₄	$I\overline{4}3d$	-455.05
Li ₂ CN ₂	I4/mmm	-350.73
Li ₂ Si	C2/m	-250.11
Li ₃ AlH ₆	$R\overline{3}H$	-298.94
Li ₃ BN ₂	P4 ₂ /mnm	-520.85
Li ₃ N	P6 ₃ /mmc	-158.51
Li ₃ ScN ₂	Ia 3	-576.78
Li ₄ BNH ₁₀	I2 ₁ 3	-833.26
Li ₄ NH	$I4_1/a$	-250.67
Li ₅ N ₃ Si	$Ia\overline{3}$	-677 74
(10 Si atoms)	14.5	
(11 Si atoms)	Ia 3	-688.11
Li ₇ N ₄ V	$P\overline{4}3a$	-964.21
Li ₇ N ₄ V	$Pa\overline{3}$	-967.44

Li ₇ N ₄ V	P4 ₂ /nmc	-959.56
Li ₇ Si ₂	Pbam	-198.63
LiAlH ₄	P2/c	-104.73
LiBC	P6 ₃ /mmc	-118.40
LiBH ₄	Pnma	-208.87
LiBH ₄	P6 ₃ mc	-192.36
LiCN	Pnma	-87.15
LiH	$Fm\overline{3}m$	-85.29
LiMgN	Pnma	-207.46
LiN ₃	C2/m	-62.70
LiNH ₂	I 4	-206.77
LiSi	$I4_1/a$	-40.26
Mg(NCN)	R 3 mH	-260.02
Mg ₂ C ₃	Pnnm	56.95
Mg ₂ Si	$Fm\overline{3}m$	-54.25
Mg ₃ BN ₃	P6 ₃ /mmc	-647.14
Mg ₃ N ₂	Ia 3	-409.28
MgB ₂	P6/mmm	-46.49
MgB ₂ C ₂	Cmca	-981.26
MgB ₄	Pnma	-75.79
MgB_7 (Mg_8B_{56})	Imma	-109.28
MgB_7 (Mg ₇ B ₅₆)	Imma	-93.59
MgB ₉ N	R 3 mH	-433.08
MgC ₂	P4 ₂ /mnm	108.56
MgCN ₂	$I\overline{4}2d$	-54.58
MgH ₂	P4 ₂ /mnm	-64.68
MgSiN ₂	Pna2 ₁	-479.67
N(SiH ₃) ₃	PĪ	-176.35
N ₄ Si ₃ -α	P31c	-768.20
N ₄ Si ₃ -β	P6 ₃ /m	-768.89
Na ₃ AlH ₆	$P2_1/n$	-208.16
NaAlH ₄	$I4_1/a$	-101.25
NaH	$Fm\overline{3}m$	-43.99
NaMgH ₃	Pnma	-119.33
NaSi	C2/c	-5.88
Sc ₂ BC ₂	I4/mmm	-295.61

Sc ₂ C	P 3 m1	-131.04
Sc ₂ C ₃	I 4 3d	-152.64
$Sc_2V_3Si_4$	P41212	-628.51
Sc ₃ AlC	$Pm\overline{3}m$	-296.68
Sc ₃ C ₄	P4/mnc	-302.81
Sc ₄ C ₃	$I\overline{4}3d$	-360.84
Sc ₅ Si ₃	P6 ₃ /mcm	-590.07
ScAl ₃ C ₃	P6 ₃ mc	-268.46
ScB ₁₂	$Fm\overline{3}m$	-272.43
ScB ₂	P6/mmm	-247.86
ScB ₂ C	P4 ₂ /mbc	-234.95
ScB ₂ C ₂	Pbam	-237.08
ScC	Fm 3 m	-36.37
ScH ₂	$Fm\overline{3}m$	-199.94
ScN	$Fm\overline{3}m$	-387.02
ScSi	Cmcm	-160.17
ScSi ₂	P6/mmm	-32.01
SiB ₆	Pm3m	301.99
Ti ₂ AlN	P6 ₃ /mmc	-455.00
Ti ₂ C	$Fd\overline{3}m$	-178.77
Ti ₂ N	I4 ₁ /amd	-377.59
Ti ₂ N	P4 ₂ /mnm	-383.91
Ti ₃ AlC	$Pm\overline{3}m$	-277.57
Ti ₃ AlC ₂	P6 ₃ /mmc	-432.87
Ti ₃ AlN	$Pm\overline{3}m$	-458.30
Ti ₃ SiC ₂	P6 ₃ /mmc	-463.99
Ti ₄ AlN ₃	P6 ₃ /mmc	-1142.13
Ti ₅ Si ₃	P6 ₃ /mcm	-571.51
Ti ₅ Si ₄	P4 ₁ 2 ₁ 2	-660.34
Ti ₈ C ₅	$R \overline{3} mH$	-876.74
TiB	$F\overline{4}3m$	139.10
TiB	Pnma	-156.74
TiB ₂	P6/mmm	-300.58
TiC	Fm 3 m	-152.14
TiH	P4 ₂ /n	-69.84
TiH ₂	$Fm\overline{3}m$	-142.66
TiN	$Fm\overline{3}m$	-333.64

Electronic Supplementary Material for I	PCCP
This journal is © The Owner Societies 2	2007

TiSi	Pnma	-142.71
TiSi ₂	Fddd	-148.82
V ₂ B ₃	Cmcm	-373.13
V ₂ C	Pbcn	-274.62
V ₂ H	I4 ₁ /amd	-40.47
V ₂ H	Cm	-40.77
V_3B_2	P4/mbm	-338.66
V ₃ Si	$Pm\overline{3}n$	-174.20
V_6C_5	P3 ₁ 12	-1285.57
V ₆ Si ₅	Ibam	-531.53
VB	Cmcm	-157.69
VB ₂	P6/mmm	-207.95
VC	$Fm\overline{3}m$	-221.13
VH ₂	$Fm\overline{3}m$	-63.31
VN	$\overline{Fm\overline{3}m}$	-192.88
VSi ₂	P6 ₄ 22	-124.23