Supplementary data

Chirality transfer through hydrogen-bonding: experimental and *ab initio* analyses of vibrational circular dichroism spectra of methyl lactate in water

Martin Losada and Yunjie Xu^{*}

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 Email: yunjie.xu@ualberta.ca

TABLE S1: Raw (D_e) and counterpoise-corrected (D_e^{CPC}) binding energies, absolute ZPE differences (Δ ZPE), absolute (D_0) and relative (ΔD_0) dissociation energies for the ML-(H₂O)_n complexes, with n =2,3, calculated at the B3PW91/6-311++G(d,p) level of theory. All energy values are in kcal/mol.

Conformer	D_e	D_e^{CPC}	ΔZPE^{a}	$D_0{}^{\mathrm{b}}$	ΔD_0	$\mathrm{bf^{c}}$
$ML-(H_2O)_2$:						
ML-2w-I	-15.197	-13.021	4.750	-8.271	0.0	0.910
ML-2w-II	-12.162	-10.435	4.176	-6.259	2.012	0.030
ML-2w-III	-12.367	-10.625	4.387	-6.238	2.033	0.029
ML-2w-IV	-12.326	-10.457	4.237	-6.220	2.051	0.028
ML-2w-V	-10.504	-8.942	4.026	-4.916	3.355	0.003
$ML-(H_2O)_3$:						
ML-3w-I	-25.824	-23.000	5.766	-17.233	0.0	0.522
ML-3w-II	-25.540	-22.710	5.530	-17.180	0.053	0.478
^a $\Delta ZPE=ZPE(complex)-ZPE(solute)-ZPE(solvent).$						

^b $D_0 = D_e^{CPC} + \Delta \text{ZPE}.$

 $^{\rm c}$ The normalized Boltzmann factor at 298 K.

Figure S1. The optimized geometries of the most stable conformers of the $ML-(H_2O)_{2,3}$ complexes at the B3LYP/6-311++G(d,p) level of theory.

Figure S2. The predicted VA and VCD spectra of the $ML-(H_2O)_{2,3}$ conformers at the B3PW91/6-311++G(d,p) level of theory.