
Appendix A, Time-dependent reservoir population

After partitioning the energy space the master equation becomes

d

dt

(
pr

pa

)
=

(
Mrr Mra

Mar Maa

) (
pr

pa

)
(79)

The population vector of the reservoir states pr is approximated by the Boltzmann population
(with arbitrary normalization) multiplied by a normalization constant, x(t), proportional to
the total time-dependent population of the reservoir, pr = x(t)br. Hence

dx

dt
br = xMrrbr + Mrapa (80)

dpa

dt
= xMarbr + Maapa (81)

A set of coupled equations is obtained by summing Eq. (80) over all grains in the reservoir, and
making the steady-state approximation for the population of the active space in Eq. (81).

dx

dt
‖br‖ = x‖Mrrbr‖ + ‖Mrapa‖ (82)

0 = x‖Marbr‖ + ‖Maapa‖ (83)

Eq. (83) is equivalent to Eq. (4), and substituting its formal solution into Eq. (82) yields a
first-order rate equation for x.

dx

dt
‖br‖ = x

[‖Mrrbr‖ − ‖Mra(Maa)−1Marbr‖] (84)

This result is very close to that of Eq. (7). To show this, note that the column sums of the
matrix M are equal to

∑
i Mij = −kj, which is zero if grain j is in the reservoir space.

‖Mrrbr‖ = −‖Marbr‖ (85)∑
i

Mra
ij = −kj −

∑
i

Maa
ij (86)

Substituting these into Eq. (84) gives

dx

dt
‖br‖ = x

[‖Kaa(Maa)−1Marbr‖] (87)

a result identical to Eq. (7) apart from the exclusion of the active space population in the
normalization, which is negligible under most conditions. Note that this method predicts an
exponential decay for the population of the reservoir.
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Appendix B, Steady-state diagonal Master Equation for

isomerization

The main disadvantage with the steady-state method for isomerization described in the main
article subsection is the use of an artificial cut-off to separate the Boltzmann-populated reser-
voirs and the active spaces, in particular the need to check that the results are not sensitive to
this cut-off. An alternative formulation of the SSME that does not make this approximation
is therefore described for a reversible isomerization reaction. This method also permits the in-
vestigation of the analytical relationship between the reversible system and the corresponding
truly irreversible reactions in which there is no back reaction.
The coupled isomerization ME is represented in a basis where the matrices MA and MB have
been separately diagonalized to ΛA and ΛB. ΛA and ΛB contain the time constants that
would pertain if there were no back-reaction, and determine how the population of each isomer
responds to reactive input from the other isomer (or elsewhere). One of these time constants
corresponds to kuni for the irreversible reaction. The others all represent fast relaxation pro-
cesses. Thus there will be a rapid response, governed by the fast components of the eigenvector
matrix, and a slow response corresponding to λ1. If the time-variation of the reaction is slow
then the fast components will rapidly attain a steady state, leaving only the slow components
to be considered in detail.
The coupled ME’s for a reversible isomerization may be written

dpA

dt
= MApA + KABpB (88)

dpB

dt
= MBpB + KBApA (89)

The matrices MA and MB are then diagonalized by similarity transforms Λ = U−1MU, which
bring the equations to the form

drA

dt
= ΛArA + JABrB (90)

drB

dt
= ΛBrB + JBArA (91)

where r = U−1p, JAB = (UA)−1KABUB and JBA = (UB)−1KBAUA.
The diagonal matrices ΛA and ΛB contain the eigenvalues of the two irreversible reactions, and
the vectors rA and rB contain the projections of the populations onto the eigenvectors of these
reactions. Assuming that the projections onto the fast eigenvectors achieve steady-state, the
coupled ME’s become

drA
1

dt
= ΛA

11r
A
1 + JAB

11 rB
1 +

∑
j≥2

JAB
1j rB

j (92)
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drB
1

dt
= ΛB

11r
B
1 + JBA

11 rA
1 +

∑
j≥2

JBA
1j rA

j (93)

drA
i

dt
= 0 = ΛA

iir
A
i + JAB

i1 rB
1 +

∑
j≥2

JAB
ij rB

j (i ≥ 2) (94)

drB
i

dt
= 0 = ΛB

iir
B
i + JBA

i1 rA
1 +

∑
j≥2

JBA
ij rA

j (i ≥ 2) (95)

Because the different parts of the matrix J appear in different parts of this system of simulta-
neous and differential equations, it aids clarity to denote each part of J by a separate symbol.
This is illustrated in Eq. (96): J11 = h, the remainder of the first row of J is denoted vT and its
elements are renumbered to start at 1. The remainder of the first column is similarly denoted
w and the cofactor matrix of J11 is renumbered and denoted H. The renumbered r and Λ
matrices are denoted s and L, respectively.

J =

(
h vT

w H

)
Λ =

(
Λ11 0
0 L

)
r =

(
r1

s

)
(96)

The equations may now be rewritten as:

drA
1

dt
= ΛA

11r
A
1 + hABrB

1 + (vAB)T sB (97)

drB
1

dt
= ΛB

11r
B
1 + hBArA

1 + (vBA)T sA (98)

dsA

dt
= 0 = LAsA + wABrB

1 + HABsB (99)

dsB

dt
= 0 = LBsB + wBArA

1 + HBAsA (100)

It is now possible to solve formally for the vectors sA and sB. The matrices HBA and HAB

cannot be inverted, in fact they need not even be square. However the diagonal matrices LA

and LB may be inverted because their eigenvalues are negative.
sA and sB therefore obey the following sets of simultaneous equations,

(LA − HAB(LB)−1HBA)sA = HAB(LB)−1wArA
1 − wBrB

1 (101)

(LB − HBA(LA)−1HAB)sB = HBA(LA)−1wBrB
1 − wArA

1 (102)

Denoting QA = LA − HAB(LB)−1HBA and QB = LB − HBA(LA)−1HAB we obtain the formal
solutions

sA = (QA)−1HAB(LB)−1wArA
1 − (QA)−1wBrB

1 (103)

sB = (QB)−1HBA(LA)−1wBrB
1 − (QB)−1wArA

1 (104)
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These solutions may now be substituted into the differential equations for the slow components,
giving

drA
1

dt
= (ΛA

11 − (vAB)TQB−1wA)rA
1 + (hAB + (vAB)T (QB)−1HBA(LA)−1wB)rB

1 (105)

drB
1

dt
= (ΛB

11 − (vBA)T (QA)−1wB)rB
1 + (hBA + (vBA)TQA−1HABLB)−1wA)rA

1 (106)

One of the two time constants for this pair of coupled equations is zero, corresponding to the
equilibrium distribution, in which the steady-state approximation is exact. The second time
constant may be identified with −krel, and is given by

krel = −(ΛA
11 + ΛB

11) + (vBA)T (QA)−1wB + (vAB)T (QB)−1wA (107)

The first term is what would be expected from the simple phenomenological rate equations,
and the second and third terms are corrections for the presence of the back reaction.
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Appendix C, Diagonal form of the non-linear SSME for

reversible association

As argued in Section 4 it is more natural to formulate a steady-state method without any
arbitrary cut-off in the state space. Although this is not very fruitful for isomerizations it is
more so here. The idea of projecting out the fast components into a steady-state subspace,
leaving only the one-dimensional equation for the slow component is similar in spirit to the
analysis of Davis and Klippenstein [53].
As in Section 4 the starting point is the diagonalized ME, Eq. (54) and (55). By considering
the equilibrium condition this ME may be written as

ds

dt
= Λ

(
s − x2

x2
eq

seq

)
(108)

dx

dt
=

∥∥∥∥KU

(
s − x2

x2
eq

seq

)∥∥∥∥ (109)

Applying the steady-state approximation for all the fast components si (i ≥ 2) gives si =
seq,ix

2/x2
eq. Hence

ds1

dt
= −|λ1|

(
s1 − x2

x2
eq

seq,1

)
(110)

dx

dt
= ‖KUs‖ − x2

x2
eq

‖KUseq‖

= ‖Ku1‖
(

s1 − x2

x2
eq

seq,1

)
(111)

where u1 is the first column of U, containing the eigenvector of M with eigenvalue λ1. From
the normalization, ‖Us‖ = 1−x, and the steady-state approximation for all the elements i ≥ 2
it follows that

‖u1‖
(

s1 − x2

x2
eq

seq,1

)
= (1 − x) − x2

x2
eq

(1 − xeq) (112)

Furthermore, the conservative nature of the energy transfer matrix P implies that ‖Ku1‖ =
−|λ1|‖u1‖, hence

dx

dt
= |λ1|

(
(1 − x) − 4c0x

2

Kc

)
(113)

which is the usual rate equation for x with dissociation rate coefficient |λ1|. Hence, the analysis
described in this section also justifies the use of the phenomenological rate equation in describing
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the kinetics of reversible dissociation / association reactions and permits the identification
kd = |λ1| and ka = |λ1|/Kc as long as the association is slow relative to the faster time
constants of M, so that the fast components rapidly achieve steady state.
An equivalent analysis can be performed for a pseudo-first order reversible association reaction
with the resulting rate equation

dx

dt
= |λ1|

(
(1 − x) − c0x

Kc

)
(114)

where c0 is the concentration of the species in excess. It is clear that in both cases the absolute
value of the leading eigenvalue of the ME matrix M can be interpreted as the dissociation rate
constant in the reversible system.
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