Supplementary Material for PCCP This journal is © The Owner Societies 2007

Chlorine-Benzene Complexes – The Reliability of Density Functionals for Non-Covalent Radical Complexes

A. K. Croft,* and H. M. Howard-Jones

Supplementary information

Contents

Calculation of ZPE correction terms	_2
Calculation of ZPE correction term for BH&HLYP/6-31G(d)	_3
Calculation of ZPE correction term for BH&HLYP/6-311+G(d, p)	_3
Calculation of ZPE correction term for B3PW91/6-311+G(d, p)	_4
Calculation of ZPE correction term for MPW1K/6-311+G(3df, 2p)	_4
Calculation of ZPE correction term for MPWB1K/6-311+G(3df, 2p)	_5

Key η_1 - π Complex geometries (G03 archive entries)

B3LYP/6-31G(d)	6
BH&HLYP/6-31G(d)	6
B3PW91/6-31G(d)	6
MPWB1K/6-31+G(d,p)	6
MPW1K/6-31+G(d,p)	7

 η_1 - σ Complex geometries (G03 archive entries)

BH&HLYP/6-31G(d)	8
MPWB1K/6-31+G(d,p)	8
MPW1K/6-31+G(d,p)	8
MPW1K/6-311+G(3df,2p)	8

Parameters for optimised DFT geometries

π -geometries	_9
σ-geometries	10

Energies of the π -complexes (inc zpe and counterpoise corrected energies)	10
DFT Energies of structures with a fully converged basis set (aug-cc-pVTZ)	_10

Calculation of ZPE correction terms

Scale factors were determined from a least squares fit to a series of 20 small molecules for which the ZPE has already been experimentally determined (listed below). This procedure was based on those already in the literature.

Molecule	Experimental kcal mol ⁻¹	Experimental (hartrees)
C_2H_2	16.46	0.026231
C_2H_4	31.47	0.050151
$CH_{2}(^{1}A_{1})$	10.33	0.016462
CH ₂ (³ B ₁)	10.55	0.016812
CH ₂ O	16.53	0.026342
CH₃CI	23.45	0.037370
CH ₄	27.71	0.044159
CHN	9.95	0.015856
СО	3.11	0.004956
CO ₂	7.24	0.011538
F_2	1.30	0.002072
H_2	6.21	0.009896
H ₂ O	13.25	0.021115
H_2S	9.40	0.014980
NH_3	21.20	0.033784
HF	5.85	0.009323
LiF	1.30	0.002072
N_2	3.36	0.005355
O ₂	2.25	0.003586
NO ₂	6.77	0.010789

Calculation of ZPE correction term for BH&HLYP/6-31G(d)

BH&HLYP/6-31G(d) ZPE scale factor

Calculation of ZPE correction term for BH&HLYP/6-311+G(d, p)

Calculation of ZPE correction term for B3PW91/6-311+G(d, p)

B3PW91/6-311+G(d,p) ZPE scale factor

Calculation of ZPE correction term for MPW1K/6-311+G(3df, 2p)

MPW1K/6-311+G(3df,2p) ZPE scale factor

Calculation of ZPE correction term for MPWB1K/6-311+G(3df, 2p)

Key η_1 - π Complex geometries

B3LYP/6-31G(d)

1\1\GINC-NODE13\FOpt\UB3LYP\6-31G(d)\C6H6Cl1(2)\CHS60A\11-Jan-2006\0\
#P B3LYP/6-31G(D) OPT\\Cmplx\\0,2\C,0.,0.,0.\C,0.0030750793,-1.0827565
014,-0.8685209492\C,0.0081568466,-0.8667859538,-2.2538908637\C,0.00995
73362,0.4349647741,-2.7748137969\C,0.0069102752,1.5240371158,-1.914226
982\C,0.0148025945,1.3179725481,-0.514441476\H,-0.117029517,2.15979415
38,0.1553097937\H,0.010490012,2.5376583805,-2.3025141157\H,0.014677640
9,0.5884198723,-3.850039565\H,0.0124958705,-1.7170232976,-2.930802587\
H,0.002504134,-2.0962594488,-0.478018432\H,-0.0017021348,-0.1512807175
1.074858688\C1,2.5116563464,1.8183920484,-0.1070154679\\Version=x86-L
inux-G03RevB.04\State=2-A\HF=-692.4018954\S2=0.759809\S2-1=0.\S2A=0.75
007\RMSD=1.725e-09\RMSF=9.026e-05\Dipole=-0.0033028,-1.3354626,0.87057
64\PG =C01 [X(C6H6C11)]\@

BH&HLYP/6-31G(d)

1\1\GINC-NODE01\F0pt\UBHandHLYP\6-31G(d)\C6H6Cl1(2)\CHS60A\10-Jan-2007 \0\\#P BHANDHLYP/6-31G(D) OPT FREQ\\C6H6---Cl\\0,2\C,-1.2128776211,-0. 7287305917,-0.1210653571\C,-1.2134088238,-0.7182653024,1.2584255313\C, -0.0077232078,-0.7132014784,1.9518619786\C,1.2030650774,-0.7199039407, 1.2673882453\C,1.2127526223,-0.7303754064,-0.1120686559\C,0.0025565588 ,-0.7205748281,-0.8210563268\H,0.006440746,-0.8398275149,-1.8900898195 \H,2.1433989536,-0.7355595423,-0.6538477551\H,2.131024418,-0.716386899 4,1.8147452316\H,-0.0117149394,-0.7039570184,3.0297767399\H,-2.1453972 676,-0.7134870015,1.7988839647\H,-2.1394856833,-0.7326553931,-0.669733 0092\C1,0.0064438885,1.7898930974,-1.4100381085\\Version=x86-Linux-G03 RevB.04\State=2-A\HF=-692.2373767\S2=0.78169\S2-1=0.\S2A=0.750709\RMSD =4.301e-09\RMSF=1.450e-05\Dipole=-0.0033626,-1.1273775,0.7004053\PG=C0 1 [X(C6H6C11)]\\@

B3PW91/6-31G(d)

MPWB1K/6-31+G(d,p)

 $\label{eq:linear_line$

MPW1K/6-31+G(d,p)

$$\label{eq:second} \begin{split} & 1 \\ 1 \\ GINC-GN1 \\ FOpt \\ UmPWP91 \\ (-31+G (D,P) OPT IOP (3/76=0572004280) \\ C6H6 \\ C1 \\ (0,2) \\ (-1,2) \\$$

η_1 - σ Complex geometries

BH&HLYP/6-31G(d)

1\1\GINC-NODE04\F0pt\UBHandHLYP\6-31G(d)\C6H6Cl1(2)\CHS60A\02-Feb-2007 \0\\#P BHANDHLYP/6-31G(D) OPT FREQ\\C6H6---Cl bh&hlyp\\0,2\C,-1.247260 2879,-0.4971390901,-0.0069240867\C,-1.2482011403,-0.4816196546,1.35374 61392\C,-0.041987614,-0.4729000485,2.079004399\C,1.1876780262,-0.51447 05934,1.3954687751\C,1.2329096473,-0.5305873465,0.0355571778\C,0.00736 45235,-0.4348595039,-0.7723537021\H,0.0131644853,-1.0947861746,-1.6305 740948\H,2.1723375019,-0.5688872385,-0.4893879777\H,2.105826606,-0.549 479728,1.9593409556\H,-0.0602094765,-0.4567604432,3.1555532664\H,-2.18 5728497,-0.4916026312,1.8858336185\H,-2.16885381,-0.5103407341,-0.5637 45502\C1,0.0459084859,1.2506655513,-1.6955301459\\Version=x86-Linux-G0 3RevB.04\State=2-A'\HF=-692.234565\S2=0.857558\S2-1=0.\S2A=0.756943\R MSD=5.292e-09\RMSF=3.577e-05\Dipole=-0.0253988,-0.9040328,0.7710466\PG =CS [SG(C2H2C11),X(C4H4)]\@

MPWB1K/6-31+G(d,p)

MPW1K/6-31+G(d,p)

1\1\GINC-NODE03\FOpt\UmPWPW91\6-31+G(d,p)\C6H6Cl1(2)\CHS60A\02-Feb-200
7\0\\#P MPWPW91/6-31+G(D,P) OPT IOP(3/76=0572004280)\\C6H6---Cl bb->s
b 1k\\0,2\C,-1.2473707562,-0.4762559333,-0.0052413776\C,-1.2479339994,
-0.4750783488,1.3561193715\C,-0.0420566319,-0.473464027,2.0825897911\C
,1.1875062305,-0.507923368,1.3978344891\C,1.2335253984,-0.5097139837,0
.0372523258\C,0.0077205277,-0.4116939826,-0.774898465\H,0.0126752619,1.1061454349,-1.6109558027\H,2.1762526146,-0.5405336562,-0.4871227395\H,2.1081769934,-0.546641648,1.9612182504\H,-0.0604294686,-0.4659139609
,3.1611898405\H,-2.1880644169,-0.4887013504,1.8876306445\H,-2.17207836
07,-0.4818908643,-0.5616025547\Cl,0.0455954566,1.2208591044,-1.7007232
029\\Version=x86-Linux-G03RevB.04\State=2-A'\HF=-692.3574799\S2=0.8459
96\S2-1=0.\S2A=0.755349\RMSD=7.536e-09\RMSF=1.873e-06\Dipole=-0.022309
6,-0.792429,0.6785642\PG=CS [SG(C2H2C11),X(C4H4)]\@

MPW1K/6-311+G(3df,2p)

1\1\GINC-NODE01\F0pt\UmPWPW91\6-311+G(3df,2p)\C6H6Cl1(2)\CHS60A\01-Feb
-2007\0\\#P MPWPW91/6-311+G(3DF,2P) OPT IOP(3/76=0572004280)\\C6H6--C1 1k opt freq bb\\0,2\C,-1.2379298821,-0.4838315901,-0.0438857835\C,1.2203791903,-0.6336076491,1.3012580953\C,-0.0094814717,-0.6980392454,
2.0063959852\C,1.207203104,-0.639159465,1.3107984191\C,1.2360106533,-0
.489489426,-0.0341632732\C,0.0024746046,-0.3192215549,-0.8154404246\H,
0.0046495289,-0.9201202785,-1.7185425656\H,2.1694998511,-0.4472214569,
-0.5691131358\H,2.1330287087,-0.7263405876,1.8552496448\H,-0.013945049
3,-0.8106421266,3.0766480878\H,-2.1508445313,-0.7165434838,1.838414154
7\H,-2.1669825676,-0.4373040373,-0.5861553785\C1,0.0092474795,1.390486
209,-1.5438987598\\Version=x86-Linux-G03RevB.04\State=2-A'\HF=-692.442
8134\S2=0.840803\S2-1=0.\S2A=0.754828\RMSD=9.977e-09\RMSF=1.183e-05\Di
pole=-0.0038628,-0.7823604,0.5276199\PG=CS [SG(C2H2C11),X(C4H4)]\@

Parameters for optimised DFT geometries

r1=Cl-C(ipso); r2=C(i)-C(ortho); r3=C(o)-C(meta); r4=C(m)-C(para); a1=Cl-C(i)-H(i); a2=Cl-C(i)-C(o); a3=Cl-C(i)-C(p); a4=H(i)-C(i)-C(p).

Table 1.	Geometric para	meters (as specifie	d in Figure 1)	for the π -complex	calculated at	different levels of	of density fur	nctional
theory.								

Level of Theory	r1	r2	r3	r4	a1	a2	a3	a4
B3LYP/6-31G(d)	2.579	1.414	1.389	1.402	82.4	97.7	104.6	7.1
B3LYP/6-311+G(d,p)	2.579	1.412	1.385	1.399	82.4	97.7	104.6	7.1
B3LYP/aug-cc-pVTZ	2.554	1.409	1.381	1.396	82.3	97.8	104.8	7.1
BH&HLYP/6-31G(d)	2.579	1.403	1.379	1.391	83.2	97.0	103.1	6.2
BH&HLYP/6-311+G(d,p)	2.594	1.400	1.378	1.389	82.8	96.9	102.9	5.8
BH&HLYP/aug-cc-pVTZ	2.570	1.397	1.374	1.386	82.8	96.9	103.1	5.9
B3PW91/6-31G(d)	2.488	1.415	1.385	1.400	84.0	98.2	105.0	9.0
B3PW91/6-311+G(d,p)	2.485	1.413	1.382	1.398	84.0	98.2	104.9	8.8
B3PW91/aug-cc-pVTZ	2.440	1.411	1.378	1.395	84.0	98.5	105.5	9.5
MPWB1K/6-31+G(d,p)	2.508	1.402	1.377	1.389	84.7	96.6	102.0	6.7
MPWB1K/6-311+G(3df,2p)	2.440	1.398	1.370	1.384	85.1	96.8	102.1	7.2
MPWB1K/aug-cc-pVTZ	2.440	1.398	1.370	1.384	85.1	96.8	102.1	7.2
MPW1K/6-31+G(d,p)	2.452	1.408	1.378	1.392	84.8	97.9	104.2	8.9
MPW1K/6-311+G(3df,2p)	-	-	-	-	-	-	-	-
MPW1K/aug-cc-pVTZ	2.353	1.406	1.370	1.388	85.5	99.1	105.8	11.3
PBE1PBE/6-31+G(d,p)	2.448	1.416	1.384	1.400	84.8	98.3	104.8	10.6
PBE1PBE/6-311+G(3df,2p)	2.361	1.413	1.376	1.394	85.7	99.0	105.7	11.3
PBE1PBE/aug-cc-pVTZ	2.375	1.412	1.377	1.394	85.0	99.1	106.1	11.1
PBE/6-31+G(d,p)	2.462	1.426	1.393	1.410	84.2	98.6	106.0	10.2
PBE/6-311+G(3df,2p)	2.389	1.422	1.385	1.404	84.9	99.4	106.8	11.7
PBE/aug-cc-pVTZ	2.404	1.422	1.386	1.404	84.3	99.4	107.1	11.4

A. K. Croft and H. M. Howard Jones

Table 2. Geometric parameters for the σ -complex calculated at different levels of density functional theory.

Level of Theory	r1	r2	r3	r4	a1	a2	a3	a4
BH&HLYP/6-31G(d)	1.922	1.471	1.361	1.407	98.8	107.7	119.5	38.3
BH&HLYP/aug-cc-pVTZ	1.915	1.466	1.354	1.403	98.7	107.5	119.4	38.1
B3PW91/aug-cc-pVTZ	2.000	1.455	2.366	1.404	95.7	106.0	116.0	31.8
MPWB1K/6-31+G(d,p)	1.867	1.464	1.351	1.399	100.1	107.8	119.6	39.6
MPWB1K/aug-cc-pVTZ	1.884	1.461	1.351	1.398	99.4	107.6	119.4	38.8
MPW1K/6-31+G(d,p)	1.877	1.474	1.361	1.408	100.1	108.2	120.8	41.0
MPW1K/6-311+G(3df,2p)	1.858	1.470	1.354	1.403	100.6	108.2	120.7	41.3
MPW1K/aug-cc-pVTZ	1.871	1.468	1.354	1.402	100.0	108.0	120.9	41.0
PBE1PBE/aug-cc-pVTZ	1.922	1.465	1.362	1.406	98.3	107.3	118.7	37.0

Energies of the π -complexes in Hartrees calculated for different DFT methods, with zero point correction energies and counterpoise corrected energies.

Table 3.

Level of Theory	Cl	Benzene	zpe	Complex	zpe	CPC complex
B3LYP/6-31G(d)	-460.1366841	-232.2486611	0.100746	-692.404760	0.101302	-692.4001279
B3LYP/6-311+G(d,p)	-460.1668825	-232.3112362	0.100149	-692.4936911	0.100707	-692.4926034
BH&HLYP/6-31G(d)	-460.127075	-232.1003066	0.104440	-692.2373767	0.10494	-692.2358914
BH&HLYP/6-311+G(d,p)	-460.1554016	-232.1587875	0.103654	-692.3228968	0.104141	-692.3217265
B3PW91/6-31G(d)	-460.0809243	-232.1590497	0.100989	-692.2563089	0.101497	-692.2549924
B3PW91/6-311+G(d,p)	-460.1095778	-232.2157704	0.100393	-692.3409252	0.100851	-692.3395890
MPWB1K/6-31+G(d,p)	-460.1822126	-232.1379445	0.103344	-692.3323887	0.103733	-692.3318755
MPW1K/6-31+G(d,p)	-460.1441181	-232.2001933	0.103547	-692.3553157	0.103869	-692.354693
PBE1PBE/6-31+G(d,p)	-459.969235	-231.9812489	0.101153	-691.9666877	0.101541	-691.9661192
PBE1PBE/6-311+G(3df,2p)	-459.9978384	-232.0346681	0.100438	-692.0500185	0.100837	-692.0480439
PBE/6-31+G(d,p)	-459.929279	-231.953918	0.097792	-691.9069434	0.098181	-691.9064083
PBE/6-311+G(3df,2p)	-459.9591998	-232.0090607	0.097220	-691.9930102	0.097686	-691.9908631

DFT Energies of structures with	a fully converged ba	asis set (aug-cc-pVTZ)
---------------------------------	----------------------	------------------------

DFT Method	Cl	Benzene	zpe	π -complex	zpe	σ -complex	zpe
B3LYP	-460.1753305	-232.3355734	0.100334	-692.5254284	0.100855	n/i	-
BH&HLYP	-460.1649646	-232.1836527	0.103794	-692.356243	0.10426	-692.3541938	0.103248
B3PW91	-460.1189712	-232.2391325	0.100351	-692.372695	0.100807	-692.3716222	0.099953
MPWB1K	-460.2184347	-232.1987781	0.102849	-692.4296331	0.10331	-692.4298246	0.102511
MPW1K	-460.1806047	-232.2619143	0.10301	-692.4532949	0.103172	-692.4565329	0.102642
PBE1PBE	-460.0057068	-232.0424638	0.100792	-692.0641541	0.101061	-692.0648897	0.100446
PBEPBE	-459.9662324	-232.0171272	0.097593	-692.0067246	0.097890	n/i	-